
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DIALABLE CRYPTOGRAPHY FOR WIRELESS NETWORKS 
 

THESIS 
 

Marnita Thompson Eaddie, Major, USAF 
 

AFIT/GCO/ENG/08-02 
 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

 



 

 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the U.S. 
Government. 

 



AFIT/GCO/ENG/08-02 

 

DIALABLE CRYPTOGRAPHY FOR WIRELESS NETWORKS 
 
 

THESIS 

 
Presented to the Faculty 

Department of Electrical and Computer Engineering 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Cyber Operations 

 

 

Marnita Thompson Eaddie 

Major, USAF 

 

March 2008 

 

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 



 

AFIT/GCO/ENG/08-02 

 

DIALABLE CRYPTOGRAPHY FOR WIRELESS NETWORKS 
 
 

 
 

Marnita Thompson Eaddie 
Major, USAF 

 
 

 
 
 
 
 
 
 
 
Approved: 
 
 
 
 
                      // signed //                                            March 6, 2008 
Dr. Kenneth M. Hopkinson, PhD (Chairman) Date 
 
                    // signed //                                               March 6, 2008 
Lt Col Stuart H. Kurkowski, PhD, USAF (Member)  Date 

 
                 // signed //                                                  March 6, 2008 
Capt Ryan W. Thomas, PhD, USAF (Member)  Date 
 

 
 
 

 



 

AFIT/GCO/ENG/08-02 

Abstract 

The objective of this research is to develop an adaptive cryptographic protocol, 

which allows users to select an optimal cryptographic strength and algorithm based upon 

the hardware and bandwidth available and allows users to reason about the level of 

security versus the system throughput.  In this constantly technically-improving society, 

the ability to communicate via wireless technology provides an avenue for delivering 

information at anytime nearly anywhere.  Sensitive or classified information can be 

transferred wirelessly across unsecured channels by using cryptographic algorithms.  The 

research presented will focus on dynamically selecting optimal cryptographic algorithms 

and cryptographic strengths based upon the hardware and bandwidth available.   The 

research will explore the performance of transferring information using various 

cryptographic algorithms and strengths using different CPU and bandwidths on various 

sized packets or files.   

This research will provide a foundation for dynamically selecting cryptographic 

algorithms and key sizes. The conclusion of the research provides a selection process for 

users to determine the best cryptographic algorithms and strengths to send desired 

information without waiting for information security personnel to determine the required 

method for transferring. This capability will be an important stepping stone towards the 

military’s vision of future Net-Centric Warfare capabilities. 

iv 



 

AFIT/GCO/ENG/08-02 

 

Dedication 

 

 

 

 

 

 

This work is dedicated to my husband, my four wonderful children, and to my mother.  
Their steadfast love and support never wavered; and they always believed that I could 
achieve my goal. 
 

 

v 



 

vi 

Acknowledgments 
 

I would like to express my sincere appreciation to my faculty advisor, Dr. Kenneth 

Hopkinson, for his guidance and support throughout the course of this thesis effort.  His 

insight and experience into my thesis topic was highly beneficial.  Special thanks as well 

to Matt Weeks for the initial writing of the gpgTester code used in this research.   I also 

thank my sponsor, Mr. Robert Bonneau, from the Air Force Office of Scientific Research 

for both the support and latitude provided to me in this endeavor. 

  

 
       Marnita Thompson Eaddie 

 

 

 

 

.



 

 

Quote 
 

 
 
 
 
 
 
 
 
 
 
 

“If plans related to secret operations are prematurely divulged the agent and all those to 
whom he spoke of them shall be put to death.” 

 
Sun Tzu  
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vii 



 

Table of Contents 

Page 

Abstract .............................................................................................................................. iv 

Dedication ............................................................................................................................v 

Acknowledgments.............................................................................................................. vi 

Acknowledgments.............................................................................................................. vi 

Quote................................................................................................................................. vii 

List of Figures ......................................................................................................................x 

List of Tables .................................................................................................................... xii 

Acronyms......................................................................................................................... xiii 

I.  Introduction .....................................................................................................................1 

1.1 Motivation ...........................................................................................................1 

1.2 Overview of Adaptive Security...........................................................................2 

1.3 Military Requirement for Wireless Technology .................................................4 

1.4 Overview of Research .........................................................................................5 

II.  Literature Review...........................................................................................................7 

2.1 Underlying Theme...............................................................................................7 

2.2 DSOCARE ..........................................................................................................8 

2.3 MANET Frameworks/Models.............................................................................9 

2.4 WAHSN ............................................................................................................11 

2.5 DRE...................................................................................................................12 

2.6 Parallel Disk Systems Model ............................................................................13 

2.7 AdaptCrypt ........................................................................................................13 

2.9 Context-Based Security.....................................................................................14 

2.10 SAM...............................................................................................................15 

viii 



 

ix 

Page 

III.  Methodology ...............................................................................................................16 

3.1 Methodology Overview.....................................................................................16 

3.2 gpgTester (Step One) ........................................................................................19 

3.3 MatLab Interpolation (Step Two) .....................................................................25 

3.4 MatLabController (Step Three).........................................................................30 

3.5 NS-2 Simulations (Step Four) ...........................................................................52 

IV.  Analysis and Results...................................................................................................56 

4.1 Analysis Overview ............................................................................................56 

4.2 gpgTester Results (Step One)............................................................................56 

4.3 MatLab Interpolation (Step Two) .....................................................................78 

4.4 MatLab Controller (Step Three)........................................................................80 

4.5 Analysis of NS-2 Simulations (Step Four)........................................................92 

4.6 Comparison of Binary Solver and Non-Binary Solver .....................................93 

V.  Conclusions and Recommendations ............................................................................96 

5.1 Summary of Research .......................................................................................96 

5.2 Future Research.................................................................................................97 

5.3 Significance of Research...................................................................................98 

Appendix 1 GpgTester .................................................................................................101 

Appendix 2 List of Computer Code Generated............................................................103 

Bibliography ....................................................................................................................106 

Vita ..................................................................................................................................109 



 

List of Figures 

Page 

Figure 1: Thesis Objective .................................................................................................. 5 

Figure 2.  Detailed Thesis Objective................................................................................. 17 

Figure 3:  Overall Methodology Flowchart ...................................................................... 18 

Figure 4: Initial Data Generation ...................................................................................... 25 

Figure 5.  Data Interpolation Overview ............................................................................ 26 

Figure 6.  MatLab Controller Overview ........................................................................... 32 

Figure 7.  Dial Settings for Controller One....................................................................... 36 

Figure 8.  Simple Network Diagram................................................................................. 53 

Figure 9.  NS-2 and MatLab Transfer of Information ...................................................... 54 

Figure 10.  File Size Differences for Random Files ......................................................... 61 

Figure 11.  Comparison of Public Key File Size Differences........................................... 62 

Figure 12.  RSA Random File Size Compression Comparisons ...................................... 65 

Figure 13.  RSA Non-Random File Size Compression Comparisons .............................. 66 

Figure 14.  RSA Random File Size Difference Standard Deviation................................. 67 

Figure 15.  3DES Random File Size Difference Standard Deviation............................... 67 

Figure 16.  Non-Random RSA File Size Difference Standard Deviations....................... 68 

Figure 17.  Bzip2 Non-Random File Size Difference Deviations .................................... 69 

Figure 18.  Symmetric Encryption for Random Files to 100MB ..................................... 70 

Figure 19.  Symmetric Encryption for Random Files to 100MB ..................................... 71 

Figure 20.  RSA and Elg-E 10MB Encryption Time........................................................ 73 

x 



 

xi 

Page 

Figure 21.  RSA vs. Elg-E Decryption Time Comparisons.............................................. 74 

Figure 22.  AES Non-Random File Compressed Comparisons........................................ 74 

Figure 23.  Elg-E Non-Random Compression Comparisons............................................ 75 

Figure 24.  TwoFish Cubic Spline for Encryption............................................................ 79 

Figure 25.  RSA Cubic Spline for Output File Size.......................................................... 80 

Figure 26.  Gamma Distribution for File Sizes................................................................. 81 

Figure 27.  Modified Gamma Distribution for File Size .................................................. 82 

Figure 28.  Uniform Distribution of Commodity Priorities.............................................. 83 

Figure 29.  MatLab Files Interaction .............................................................................. 105 



 

List of Tables 

Page 

Table 1: gpgTester Scenario ............................................................................................. 22 

Table 2.  Sample Commodity Matrix ............................................................................... 33 

Table 3.  Sample Input File for Controller One ................................................................ 35 

Table 4.  Sample Input File for Controller Two ............................................................... 47 

Table 5.  Sample Input File for Controller Three ............................................................. 49 

Table 6.  Elg-E Sample Output from gpgTester ............................................................... 57 

Table 7.  Sample Averaged Output for AES Scenarios .................................................... 58 

Table 8.  Sample File Size Differences for Symmetric Algorithms ................................. 60 

Table 9.  Sample Random File Size Difference Comparison ........................................... 63 

Table 10.  Sample Non-Random File Size Difference Comparison................................. 64 

Table 11.  Symmetric Encryption (msec) for Random File Sizes .................................... 72 

Table 12.  Security and Performance Levels for Controller One ..................................... 76 

Table 13.  Security and Performance Levels for Controller Three................................... 77 

Table 14.  Testing1.m Sample File Output ....................................................................... 78 

Table 15.  Sample Output from Controller One ............................................................... 85 

Table 16.  Sample Output File for Controller Two........................................................... 88 

Table 17.  Sample Commodities to Send for Controller Two .......................................... 90 

Table 18.  Compilation of Controller Two Output ........................................................... 91 

Table 19.  Sample Comparison of Controllers.................................................................. 94 

xii 



 

Acronyms 

 

3DES:  Triple Data Encryption Standard 

AES:  Advanced Encryption Standard 

ASM:  Adaptive Security Model 

ASPAD: Adaptive Quality of Security Control Scheme 

DRE:  Distributed Real-time Embedded 

DSOCARE: Dynamic Selector of Optimal Cryptographic Algorithms in a Runtime 

Environment 

ELG-E: ElGamal 

GPG:  GNU Privacy Guard 

HANC: Hybrid Agent for Network Control 

MANET: Mobile Ad-hoc Network 

NetA:  Network Attack 

NetD:  Network Defense 

PI:  Performance Index 

ROCAS: Runtime Optimal Cryptographic Algorithm Selector 

RSA:  Rivest, Shamir, and Adleman 

RTES:  Real Time Embedded System 

SI:  Security Index 

SoD:  Strength of Defense 

SPI:  Service Provision Index 

xiii 



 

xiv 

SSTT:  Systematic Security and Timeliness Tradeoffs 

WAHSN: Wireless Ad-Hoc and Sensor Network 

 

 

 



 

 
 
 

DIALABLE CRYPTOGRAPHY FOR WIRELESS NETWORKS 
 
 
 
 

I.  Introduction 

1.1 Motivation 
 

Cryptography continues to play a major role in the military and in the public 

sector.  The utilization of cryptography has existed for centuries.  Early Egyptians used 

hieroglyphics on tombs as riddles or puzzles for visitors to decipher.  Around 1500 B.C., 

scribes from Mesopotamia used encrypted cuneiform tablets for keeping pottery glaze 

formulas secret.  The first known use of cryptography for military communication was in 

475 B.C when the Spartans used the transposition cipher (Mollin, 2005).   

Military communications continue to use forms of cryptography.  Examples 

include the substitution cipher used by Julius Caesar, the wheel cipher invented by 

Thomas Jefferson, the Playfair cipher used by the British Foreign Office in the 1800s, 

forms of Vigenere ciphers used by the Confederate army, and the Enigma machine used 

by the Germans during World War II (Mollin, 2005).   

From ancient history to present day, cryptography has enabled people to 

communicate secretly with some confidence in the chosen cryptographic scheme to 

assume that adversaries will be unable to interpret the communication in a timely manner.  

The basic need for cryptography has not changed since its integration with technology 

but the schemes have evolved as we become more complex and demand more complex 
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technology.  Static security methods and statically chosen cryptographic schemes cannot 

adjust to changing environmental factors especially in the wireless environment.  To meet 

dynamic environmental security requirements an adaptive approach is necessary.  

Adaptive security using cryptography is one method to affect the security posture of 

dynamic environments. 

1.2 Overview of Adaptive Security 

Adaptive security is a collection of traditional security measures, vulnerability 

monitoring, detection, and response.  Adaptive security can be manual or automatic 

although a manual method does not allow for responding quickly in a fast changing 

environment.  Automatic methods delve into the arena of evolutionary computing where 

patterns in the biological world are observed and modeled including dynamic learning, 

dynamic decision-making, self-guidance, and self-repair.  Evolutionary computing should 

be able to handle the future optimization and security challenges that arise with increased 

technology including the distribution, scale (micro to massive), autonomy, and mobility 

of systems. 

Using adaptive security, a system can exist in a less secure but higher performing 

state for normal operation and then can adapt to a more secure and usually less 

performing state when negative factors arise within or outside the system (Hinton, 

unpublished).  Because it is adaptive, the system can utilize different cryptographic 

algorithms.   

With adaptive security, a fine balance must be struck between security 

(cryptographic computations) and performance, or, for distributed real-time embedded 
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(DRE), between real-time monitoring and cryptographic computations competing for 

computational time and resources.  This inherent overhead from cryptographic 

computations can strain the infrastructure.  In addition, the security schemes used can 

also affect the system throughput and latencies that can potentially make networked 

applications more vulnerable to attacks or denial of services.  Research is under way to 

solve various adaptive security problems involving runtime environments, mobile ad-hoc 

networks, networked parallel disk systems, and real-time embedded systems utilizing 

various schemes (e.g. Alampalayam, 2003; Soliman, 2005; Raissi, 2006; and Nijim, 

2006).  The research in this thesis focuses on allowing users to initiate ‘dialable’ 

cryptography for dynamic networks including wireless networks. 

The idea of dynamically changing the security of a system is important in wireless 

ad hoc and sensor networks where critical resources such as battery life, memory, 

computational power, and bandwidth are not constant nor necessarily predictable.  

Mobile ad hoc networks are also susceptible to intrusion, eavesdropping, and selfishness 

(where one node may demand and receive more resources than another) (Chigan, 2004). 

For these vulnerable wireless enabled networks or systems, confidentiality, integrity, and 

authentication is critical.  If the systems include distributed real-time embedded (DRE) 

applications it becomes even more crucial to verify that adversaries have not read data 

(confidentiality), have not modified data (integrity), nor claim false identity 

(authentication).  These systems or applications rely heavily on cryptographic schemes 

for information processing.  DREs need to report the real world status to the proper 

personnel.  Examples of DREs include electric grid management (report on electric grid 
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status for determining energy supply plans) and defense applications (report on the 

battlefield to military control center for preparing overall battle tactics). 

1.3 Military Requirement for Wireless Technology 

Cryptography is an important player in wireless technology which in turn plays a 

crucial role in the military.  “One would be hard-pressed to name a wireless technology 

that didn’t have its beginnings in the military world” (Blyler, 2004).  The military is, of 

course, concerned with information operations.   

A subset of information operations is Computer Network Defense.  “NetD 

operations protect and defend friendly information systems, computer networks, and 

information transiting within them.  In addition, they protect against the NetA (Computer 

Network Attack) capabilities of others” (Franz, 2007).  Presently, network personnel 

concentrate NetD efforts predominantly on the NIPRNET.  However, non-wired 

technology is increasing exponentially.  “Military worldwide are moving toward the 

concept of network-centric operations: networking their forces with wireless 

communications technologies to increase combat effectiveness” (Pucker, 2007).  

Bandwidth intensive applications like video teleconferencing, secure telephony, and 

imagery transfers are now requirements we expect in military communications and 

networks to increase situational awareness.  These networks allow easy installation, 

lower installation costs, and flexibility (no traditional wired physical restrictions).   

 Wireless technology can be used by the military for sensors and sensor networks, 

unmanned vehicles, aircraft, communications, etc.  With usage, however, comes the 

responsibility of securing the technology against compromise.  Current security 
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techniques are concerned with meeting requirements for three security principles: 

confidentiality, integrity, and authenticity, principles which can be fulfilled via 

cryptography.   

Without strong, reliable cryptographic algorithms, the data collected via different 

technologies would not be trustworthy and the information collected would be too 

precarious for military decision makers.  In fact, because unencrypted wireless traffic is 

susceptible to sniffing, the Department of Defense published Directive 8100.2 in April 

2004 to address the emerging new technologies.  The directive mandated encryption on 

unclassified commercial wireless devices, active screening for wireless devices (unknown 

attackers could set up wireless devices at perimeters), and incorporation of wireless 

information into annual Information Assurance training (military personnel should not be 

the weak link because of a lack of training) (Defense, 2004).   

1.4 Overview of Research 

 The objective of this research is to develop an adaptive cryptographic controller, 

which allows users to reason about the level of security versus the system throughput.   

 

Figure 1: Thesis Objective 

The ability to communicate via wireless technology provides an avenue for 

delivering information at anytime.  Sensitive or classified information can be transferred 

wirelessly across unsecured channels by using cryptographic algorithms.  My research 

5 



 

6 

focused on dynamically selecting optimal cryptographic algorithms and cryptographic 

strengths based upon the hardware and bandwidth that were available for the transferring 

of various sized files or packets.   Simulations were used to test the controller that was 

developed in my research. 

The conclusion of the research provides a selection process for users to determine 

the best cryptographic algorithms and strengths to send desired information without 

waiting for information security personnel to determine the required method for 

transferring.  This capability will be an important stepping stone towards the military’s 

vision of future Net-Centric Warfare capabilities. 

 

 



 

 

II.  Literature Review 

2.1 Underlying Theme 

Research in cryptography, to meet the growing demands of wireless technology, 

continues to expand.  Some of the research focuses closely on the research objective, 

adapting cryptographic algorithms based upon the observed wireless network 

environment, i.e. a dialable cryptography for wireless networks.  The different nuances 

for the term ‘dialable cryptography’ include dynamic cryptography or adaptive security.  

The literature review of this research was used in the research methodology. 

The basic premise of different on-going dynamic cryptography is that if 

cryptographic algorithms are predetermined before programs are run or data transferred, 

then the algorithms are based upon assumptions agreed upon prior to runtime (based on 

earlier behavior) and does not take into consideration the actual runtime environment.  

These algorithms are static, predictable, inefficient, and bind the user to security 

decisions made at the beginning of the communication session or network connection 

(Raissi, 2006).  Monitoring is required to determine if the static algorithm is sufficient for 

the task.  The optimal approach is to dynamically select the cryptographic algorithm at 

runtime, based upon the state of the actual system, to balance the tradeoffs between 

security, speed, and priority for the files to be transferred.   
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2.2 DSOCARE  

 A model to do this is the Dynamic Selection of Optimal Cryptographic 

Algorithms in a Runtime Environment (DSOCARE).  DSOCARE worked at the 

middleware level to collect, select, and report on symmetric block ciphers.   

 The DSOCARE’s collection function included running benchmark tests and 

storing the data in database management systems located on the DSOCARE server. 

(Raissi 2006)  The model used a Runtime Optimal Cryptographic Algorithm Selector 

(ROCAS) that was based on a hybrid genetic algorithm (part of evolutionary computing 

where biological systems are observed).  To select optimal algorithms, ROCAS received 

diverse client security requests with high and low security, speed, and prioritized quality 

of service parameters.  The reporting function of DSOCARE was used to generate and 

gather data. 

DSOCARE’s basic approach is that one algorithm does not fit all situations.  The 

centralized approach (middleware) allowed for the collecting, analyzing, and 

recommending optimal cryptographic algorithms.  Since communication services vary in 

security, speed, and priority, the chosen optimal cryptographic algorithm was based on 

the output from the genetic algorithm (which included client input) and not a statically 

predetermined one. 

 The results from DSOCARE’s data indicate that security, speed, and priority are 

improved with running DSOCARE as opposed to traditional cryptographic static services 

or methods.    
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2.3 MANET Frameworks/Models 
 

A divergence from the standard delivery of cryptographic methods is on-demand 

key distribution for mobile ad-hoc networks (MANETs).  This method uses message keys 

that are passed through the network to avoid encrypting and decrypting messages at every 

node.  Instead the message key is the only item re-encrypted.  

 MANETs are subject to intermittent connections caused by obstacles blocking 

transmission or other interference.  In MANETs, there may be a need to have secure 

multicast communications where many nodes receive the encrypted message at once 

instead of unicast where an encrypted message is designated for one node.  Because of 

the unreliability of MANETs and multicast messaging, on-demand key distribution 

becomes a necessary method for communication.  This distribution uses gossip-based 

protocols which use epidemic communication patterns (these patterns are observed in 

biological systems when diseases are spread).  Like the spread of a disease, there are 

healthy nodes (reliable) and unhealthy nodes (unreliable).  The healthy nodes will receive 

the message in a logarithmic number of rounds while the unreliable nodes will receive it 

at an intermittent rate (Graham, Hopkinson et al. 2007).   

Although this thesis did not focus on the actual distribution of the cryptographic 

keys, the research by Graham provided a background investigation into the key 

distribution challenges in wireless networks.  In addition, it emphasized measuring end-

to-end delay from prior to encryption to after encryption.  Another observation from the 

paper is that symmetric key algorithms are usually faster than public key although “in 

practice, … symmetric key encryption is preferred, but public key encryption is often 
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required in order to send a symmetric key for future use” (Graham, Hopkinson et al. 

2007). 

Another model for MANETS is the Adaptive Security Model (ASM) for denial of 

service security threats in mobile agent systems (Alampalayam and Kumar 2003).  It is 

based on a fuzzy feedback controller.  Fuzzy feedback controllers are used with fuzzy 

logic which deals with approximate reasoning similar to how humans logically arrive at 

answers given imprecise information.  The user selects security levels and requirements 

that he/she needs.  Since MANETs are more susceptible to intrusion, eavesdropping, and 

selfishness, the “goal is to provide a security framework that will detect automatically 

various attacks and take appropriate measures to minimize the denial of service effects” 

(Alampalayam and Kumar 2003).  This flexible and adaptable framework created by the 

model is scalable, and could detect, prevent, and control security attacks at node-level or 

system-level (Alampalayam and Kumar 2003).  The ASM integrates security 

requirements by combining holistic (“holistic security is proactive, preventive, and 

predictive” (Alampalayam and Kumar 2003)) and adaptive security techniques to allow 

users who are not experts in security to easily decide security policies.  The ASM uses a 

feedback control scheme similar to how a human reacts to a virus (evolutionary 

computing) and assigns security levels (Alampalayam and Kumar 2003). 

The concepts of how the user selects security levels and requirements provide 

background information for this research and were incorporated into the methodology. 
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2.4 WAHSN 

Similar to Mobile Ad-Hoc Networks, Wireless Ad-hoc and Sensor Networks 

(WAHSN) can utilize adaptive security.  Critical resources (“battery life, memory, 

computation, power, and bandwidth” (Chigan, Ye et al. 2004) for WAHSNs are used as 

parameters for a resource-aware security framework.  This self-adaptive framework takes 

into consideration performance cost and network resource expenses.  The basis of the 

framework is a knowledge profile that includes system vulnerabilities, system security 

requirements, system network performance requirements, and critical resources.  The 

security attributes are quantified into a security index (SI).  Each specific WAHSN 

application (for example integrity or confidentiality) is given a value on a scale with 

associated resource costs.  The SI quantifies how secure the system is.  Another 

quantification is the Performance Index (PI) which quantifies the network performance.  

The Service Provision Index (SPI) combines security and performance.  Ye Chigan’s 

research was investigating two different optimization modules for security.  Both of the 

modules should determine the best cryptographic scheme to apply to the WAHSN system 

under different communication protocols and resource constraints.  Important points from 

Chigan’s research which was applied to this research are that the mechanism (controller) 

must take into consideration various limiting factors (i.e., it cannot just choose the highest 

level of cryptographic algorithms) and that the controller seeks to maximize the overall 

network security service and network performance service.  In addition, it can switch 

from one protocol (including the cryptographic algorithms) under attack to another 

protocol (Chigan, Ye et al. 2004).  
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2.5 DRE 

In addition to MANETs and WAHSNs, distributed real-time embedded (DRE) 

applications use wireless technology.  For DREs, the criticality to report in a timely 

manner is countered by the threat of adversaries reading data, modifying it, or claiming 

false identity (Kang and Son, 2006).  The model, Systematic Security and Timeliness 

Tradeoffs (SSTT), balances time and cryptographic security requirements in applications 

such as battlefield monitoring and target tracking.  The model introduces the variable, 

Strength of Defense (SoD), based on the cryptographic key length.  The cryptographic 

key length is adapted to improve the performance of DREs.  The model does not test for 

dynamic key generation or distribution but assumes that the keys are distributed and 

agreed upon prior to running the programs and only symmetric keys are used.   

The model attempts to achieve three main goals: confidentiality, integrity, and 

authenticity.  Confidentiality is supported when a Real Time Embedded System (RTES) 

encrypts the plaintext message and prevents replay attacks by using counters.  The 

integrity and authenticity of the message is achieved by creating a secure message 

authentication code that is computed over the message using a secure one-way hash 

function.  There is an exhibited tradeoff between the cryptographic algorithms and speed.  

For example, if an RTES inside of an unmanned aerial vehicle normally use AES-256, it 

can decrease to AES-128 when it is overloaded and unable to perform well.  The SSTT 

algorithm is not tied to a specific cryptographic algorithm nor key length (Kang and Son, 

2006).   
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2.6 Parallel Disk Systems Model 

Mobile Ad-hoc Networks, Wireless Ad-hoc and Sensor Networks, and 

Distributed Real-Time Embedded applications are not the only networks/applications that 

benefit from adaptive security.  Parallel disk systems can also benefit.  Although they can 

alleviate disk input/output bottleneck problems, these highly scalable systems normally 

do not allow the optimal and dynamic changing of the networked environment.   

A model currently under research for parallel disk systems is the Adaptive Quality 

of Security Control Scheme (ASPAD).  It allows network disk systems to adapt to 

changing security requirements and workload conditions.  ASPAD has three phases: 

“dynamic data partitioning, response time estimation, and adaptive security quality 

control” (Nijim, Qin et al. 2006).  Through the successful completion of the phases, 

ASPAD can achieve two major performance goals: high quality of security and 

guaranteed response time.   

The ASPAD research methodologies was used as background for the 

methodology because the ASPAD determined the cryptographic scheme for the disk 

requests while still trying to achieve two performance goals:  high quality of security and 

guaranteed response time.   

2.7 AdaptCrypt 

Another aspect of choosing cryptographic algorithms for adaptive security is 

incorporating the security policies into the decision-making process.  Security policies 

take into consideration system assets (cryptographic algorithms) and security 

responsibilities.  One method concerns flexible encryption for files where the entire file 
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or text may have different types of encryption.  “The AdaptCrypt model uses several 

different encryption algorithms (block ciphers for example AES, BlowFish, and IDEA) to 

encrypt a file” (Manzanares, Camara et al. 2005).  The security levels can be modified by 

changing the encryption algorithms or switching key lengths for chosen parts of the file.  

For example, one pattern for a four-block file could be AES 256-Blowfish-AES-128-

TwoFish.  If the encryption pattern changes, only the portion that is incorrect would need 

to be modified.  Using parallelized encryption, each of the encrypted blocks can be 

individually accessed.  ApaptCrypt is not automatic but relies upon the user to manually 

encrypt and decrypt based upon the security policies.  Further testing of AdaptCrypt 

could lead to enhancements for automatically choosing the security levels (cryptographic 

algorithms) based upon the outcomes of the security policies. 

2.9 Context-Based Security 

Another method for adaptive security via security policies is with context-based 

security.  Context-based security considers the context in which the system is used.  It is a 

relatively new approach to counter different types of security problems brought on by 

“increased mobility of pervasive systems and heterogeneity of devices” (Brezillon, 2004).  

In these systems, the context continually changed based upon dynamic environmental 

variations and was used to determine the security context.  The security context is a set of 

collected information from the user and application environment that influences the 

security infrastructure of the user and the application (Brezillon, 2004).  This security 

context describes situations in which security decisions were made.  These decisions can 

include adapting the cryptographic protocol used, requiring stronger authentication, or 
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automatically denying access when intrusion was detected.  The model used contextual 

graphs which were “chance nodes where contextual elements are analyzed to select the 

corresponding path.” (Brezillon, 2004).  The graphs take into account the actual working 

environment.   

2.10 SAM 

 Although the research by Hinton on a Security Adaptive Manager, SAM, refers 

mainly to operating systems under different conditions and not necessarily with 

cryptography adaptations, there were interesting ideas that was utilized in this thesis.     

 First “using adaptive security, a system can exist in a less secure, more 

performant state until it comes under attack”  (Hinton, Cowan et al., unpublished).  

 Second, “adaptive security allows us to implement a system in a high 

performance, highly functional state for normal use, and then adapt the system to a less 

performant/less functional/more secure state in the presence of attacks” (Hinton, Cowan 

et al., unpublished). 

 Third, it discusses an adaptation space which defines when and how adaptation is 

implemented.  The adaptation space includes condition space and transition graph.  The 

condition space is a complete lattice of possible conditions of interest and their settings.  

In the transition graph, there is one node for each system configuration.  The graph 

defines how to transition between different configurations (implementation alternatives). 

 



 

 

III.  Methodology 

3.1 Methodology Overview 

This thesis investigated the development of software controllers that would 

choose an encryption scheme for a commodity or a list of commodities.  These 

commodities represented the information to be sent at a node in a wired or wireless 

network.  At the node, the commodities will be encrypted (simulated) and then 

transmitted over the network, however with limited bandwidth and CPU, only a select list 

of commodities can be transmitted.  Since each commodity consisted of a file size and a 

priority for the file size, the list of transmitted commodities were the ones that maximized 

the sum of the priorities (i.e. the goodness) and still maintained the priority for the 

commodity (e.g. a priority of 80 would be transmitted before a priority of 20 if possible).   

In making the decision for an encryption scheme, the controller had to factor in 

the available bandwidth and CPU for the entire list of commodities sent to it.  In addition, 

the performance characteristics (i.e. the security level) of different encryption schemes 

determined the transmitted commodity list.   

 The end results of the thesis were four different controllers developed which 

allowed two different methods for choosing the encryption scheme (via binary integer 

programming and without binary integer programming).  Figure 2 shows a graphical 

representation of the research objective. 
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Figure 2.  Detailed Thesis Objective 

The controllers could choose between seven encryption algorithms (3DES, AES, 

BlowFish, CAST5, ElGamal, RSA, and TwoFish) and various key sizes.   

To meet the research goal of creating controllers for selecting encryption 

schemes, the research was divided into four steps.  Step 1 developed a front end 

(gpgTester) to the cryptographic tool, gpg, GNU Privacy Guard.  The front end, 

gpgTester, was used to time how long various cryptographic algorithms took to encrypt 

and decrypt various sized files.  Step 2 inserted the data from Step 1 into MatLab to 

interpolate the given inputted data based upon encryption schemes.  Step 3 created the 
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controller by optimizing the interpolated data from Step 2 utilizing MatLab.  Step 4 used 

NS-2 to run simulations for the controller.  The flowchart in Figure 3 depicts the four 

major steps in the research.   

 

Figure 3:  Overall Methodology Flowchart 

The primary tools used in this research were C++, gpgTester (code written for this 

research), gpg (a tool for using different cryptographic algorithms), MatLab (used to 

interpolate the data, optimize the computations from gpgTester data, and create the 

controller), and NS-2 (used to run simulations). The simulations and controllers were 

based upon the results gathered from the gpgTester program.   
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3.2 gpgTester (Step One) 

3.2.1 gpgTester Explanation. 

The first step of the research was to actually collect statistical data from different 

encryption algorithms and key sizes.  This data, the foundation for the other research 

steps, included the encryption time, encrypted file size, and the decrypted time for 

different files.   

To collect the data, the open source cryptographic tool, gpg (GNU Privacy 

Guard), was used.  This tool encrypted and decrypted files using various encryption 

algorithms, key sizes, and compression utilities.  To access the gpg and collect the 

statistical data, the gpgTester program, written in C++,  served as a front-end to gpg. The 

gpgTester executed different cryptographic algorithms with various sized files.  The 

gpgTester was run in a cygwin environment on a Dell Latitude D820 Microsoft Windows 

XP Professional with Service Pack 2.  The laptop had an Intel Core 2 CPU at 2.0 GHz 

with 3.25 GB of RAM.  Cygwin, a Linux emulator for Windows, included an executable 

version of gpg (Gnu Privacy Guard version 1.4.5) already installed.  GpgTester used 

system calls to gpg to select different cryptographic algorithms.  See Appendix 1 for an 

explanation of the gpgTester code and a brief explanation of gpg.  GpgTester was able to 

test symmetric and public key algorithms for encrypting and decrypting files.  It also 

tested compressed versus non-compressed files of various sizes.   

3.2.2 gpgTester Scenarios. 

To generate data for the MatLab optimizations, gpgTester fed different 

combinations of file sizes and cryptographic algorithms into gpg.  The different 
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algorithms were Elg-E, RSA, AES, AES192, AES256, TwoFish, BlowFish, 3DES, and 

CAST5.  Elg-E (ElGamal) and RSA are public key algorithms while the other ones are 

symmetric key algorithms.  Data generated from the scenarios included the encryption 

time, decryption time, and output file size for a given input file size for the various 

encryption algorithms.  Compression times for the algorithms were also captured for 

some input file sizes. 

 For Elg-E and RSA the key strengths were between the sizes of 1024 and 4096 in 

increasing increments of 256.  In addition, ELG-E included key strength 768, however, 

RSA could not go below 1024 in gpg.  

 A limiting factor for symmetric key strengths was the gpg itself.  Gpg allows for 

key strengths of 128, 192, and 256 for AES, but not for TwoFish, BlowFish, and CAST5 

which are all defaulted to 128.    

 The file sizes chosen for encryption were 1, and 5 to 100 in increasing increments 

of 5, and 200 to 1000MB in increasing increments of 100.  Because of the extensive 

amount of time in testing these various sized files, the file sizes for decryption were from 

1 to 100MB for key sizes 2048 and under, and 1MB for key sizes above 2048.  Primarily, 

the research focused on the time required to encrypt files and the encrypted output file 

size.  In addition, if compression was used then all three of the compression algorithms 

were compared, i.e. bzip2, zip, and zlib.  Each scenario was run 30 times using gpgTester 

to allow the averaged data to be used in the other steps.   

 Two types of files were used, randomly-generated and non-randomly generated.  

The randomly generated files were created with 256 bytes of data increments.  The 
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majority of testing was based upon files generated randomly except for the testing 

comparisons for the compression files.  Therefore to test the different compression 

algorithms with each other and uncompressed files, non-random sized files were created.  

The non-random files had various text in it including the American Constitution, the 

Declaration of Independence, passages from various religious texts (Christian and 

Buddhist), full text of Requests for Comments, and other text found on the internet.  The 

same file (either 1, 10, 20, or 30 MB) was used to test the uncompressed file with the 

bzip2, zip, and zlib compression utilities.  In addition, to show the offset for the 

compression of random files, the bzip2, zip, and zlib were compared with various sized 

random files.  

 The following table shows a depiction of the testing scenarios for one algorithm, 

CAST5: 
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Table 1: gpgTester Scenario 
Algorithm Key size Random File size  Non-Random  Compression Encrypted Decrypted 

CAST5 128 1 1 Bzip2, zlib, zip Yes Yes 

  5   Yes Yes 

  10 10 Bzip2, zlib, zip Yes Yes 

  15   Yes Yes 

  20 20 Bzip2, zlib, zip Yes Yes 

  25   Yes Yes 

  30 30 Bzip2, zlib, zip Yes Yes 

  35   Yes Yes 

  40  Bzip2, zlib, zip Yes Yes 

  45   Yes Yes 

  50  Bzip2, zlib, zip Yes Yes 

  55   Yes Yes 

  60  Bzip2, zlib, zip Yes Yes 

  65   Yes Yes 

  70  Bzip2, zlib, zip Yes Yes 

  75   Yes Yes 

  80  Bzip2, zlib, zip Yes Yes 

  85   Yes Yes 

  90  Bzip2, zlib, zip Yes Yes 

  95   Yes Yes 

  100  Bzip2, zlib, zip Yes Yes 

  200   Yes No 

  300   Yes No 

  400   Yes No 

  500   Yes No 

  600   Yes No 

  700   Yes No 

  800   Yes No 

  900   Yes No 

  1000   Yes No 
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The following data was tested via gpgTester: 
 

• CAST5 with Key size 128.  File sizes from 1, and 5 to 100 in increments 

of 5MB, and 200 to 1000MB in increments of 100.  Decryption for file 

sizes 100MB and under.  Compression for files 1, 10, 20, and 30 MB. 

• BlowFish with Key size 128.  File sizes from 1, and 5 to 100 in increments 

of 5MB, and 200 to 1000MB in increments of 100.  Decryption for file 

sizes 100MB and under.  Compression for files 1, 10, 20, and 30 MB.. 

• TwoFish with Key size 128.  File sizes from 1, and 5 to 100 in increments 

of 5MB, and 200 to 1000MB in increments of 100.  Decryption for file 

sizes 100MB and under.  Compression for files 1, 10, 20, and 30 MB. 

• 3DES with Key size 128.  File sizes from 1, and 5 to 100 in increments of 

5MB, and 200 to 1000MB in increments of 100.  Decryption for file sizes 

100MB and under.  Compression for files 1, 10, 20, and 30 MB. 

• AES with Key size 128, 192, and 256.  File sizes from 1, and 5 to 100 in 

increments of 5MB, and 200 to 1000MB in increments of 100.  

Decryption for file sizes 100MB and under.  Compression for key size 128 

for files 1, 10, 20, and 30 MB. 

• RSA with Key length 1024, 1280, 1536, 1792, 2048, 2304, 2560, 2816, 

3072, 3328, 3584, 3840, and 4096.  File sizes from 1, and 5 to 100 in 

increments of 5MB, and 200 to 1000MB in increments of 100.  

Decryption only for file sizes 100MB and under with key lengths 2048 
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and below and for 1MB files for the other key lengths.  Compression for 

key length 1048 for files 1, 10, 20, and 30 MB. 

• ElGamal (Elg-E) with Key length 768, 1024, 1280, 1536, 1792, 2048, 

2304, 2560, 2816, 3072, 3328, 3584, 3840, and 4096.  File sizes from 1, 

and 5 to 100 in increments of 5MB, and 200 to 1000MB in increments of 

100.  Decryption only for file sizes 100MB and under with key lengths 

2048 and below and for 1MB files for the other key lengths.  Compression 

for key length 1048 for files 1, 10, 20, and 30 MB. 

With gpgTester, the public key algorithm is chosen with another algorithm when 

a system call to gpg occurs.  The choices are RSA with RSA, RSA with Elg-E, DSA with 

RSA, or DSA with Elg-E.  Regardless of which algorithm is chosen first, it is the second 

algorithm that is actually used for encryption.  The first algorithm is strictly for signing 

and is not factored into the test results nor used in any timings.  Therefore, only RSA 

with RSA and RSA with ELG-E were used and not DSA as the signing algorithm.  For 

symmetric key, 3DES, AES, TwoFish, BlowFish, and CAST5 were used.  The default 

key size for 3DES, TwoFish, BlowFish, and CAST5 was 128 bit (as listed in the 

Assumptions/Limitations section of this document).   

GpgTester created random files of the requested file size.  This random file was 

then encrypted and, if required, decrypted and/or compressed.  All data was sent to a 

Microsoft Excel file for preliminary analysis and as input into MatLab optimizations. 

A graphical representation is shown in Figure 4. 
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Figure 4: Initial Data Generation 

3.2.3 gpgTester Verification. 

Prior to using the results from the gpgTester, the program was verified to 

determine that the correct data would be generated. 

 The gpgTester created different file sizes based upon the input of the user.  For a 

detailed explanation of the verification of the gpgTester see Appendix 1.   

3.3 MatLab Interpolation (Step Two) 

3.3.1 Overview of Interpolation. 

 The statistical data (encryption time and encrypted file size) collected from Step 

One was the foundation for the other steps primarily Step Two.  The overall objective of 
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this step was to calculate the simulated encryption time and simulated encrypted file size 

for different commodities’ file sizes.  This step used interpolation to determine new data 

points (encryption time and encrypted file size) for different input file sizes within the 

range of the collected data (test results from the gpgTester, Step One).  The interpolated 

data points for the commodities were sent to the various controllers (Step Three) for 

optimizing.  (The rest of the research (Step Two and above) focused only on encryption 

times and encrypted output file size, however the data could be expanded to include 

decryption.)  A summary graph of this step is provided in Figure 5. 
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Figure 5.  Data Interpolation Overview 
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3.3.2 Transfer Data to MatLab File. 

After collecting the data from Step One, gpgTester, MatLab was used to 

interpolate the data.  In order to actually use the data for MatLab, the data from Step One 

was compiled into one spreadsheet, results.xls, which included all of the averaged data 

(encryption times and encrypted file sizes) from the 256 files from gpgTester executions.  

This spreadsheet was then read by six MatLab files (inputCreate3DES, inputCreateAES, 

inputCreateBlowFish, inputCreateTwoFish, inputCreateCAST5, inputCreateElg, 

inputCreateRSA) to extract data into one file.  This file was used to create one matrix in a 

format easily translated by other MatLab files.  (An interesting characteristic of MatLab 

is that all data is considered matrices, therefore all of the data to and from MatLab was 

written in matrix (or vector) form.) 

3.3.3 Data Interpolation. 

To exploit the merged matrix data, an interpolation was required to determine the 

output for any given file size based upon the encryption algorithm, the compression 

function, the key size, and randomness of the file.  This allows for the curve fitting of 

new data points within the range of the tested data from Step One. This interpolation was 

done within the runCryptGrav files which were the fundamental MatLab files for this part 

of the research.  The interpolation chosen was the cubic spline interpolation using 

polynomials because “a practical feature of cubic splines is that they minimize the 

oscillations in the fit between the interpolating points” (Guenther 2002).  “Polynomials 

are the approximating functions of choice when a smooth function is to be approximated 

locally” (MatLab Website).  Normally, interpolation with high-order polynomials (to 
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create smooth lines/curves between two data points) yield erratic results, however, by 

using cubic splines, this erratic behavior was eliminated (Hanselman and Littlefield, 

2005).  Cubic spline data interpolation involved the approximation of piecewise third-

order polynomials which passed through a set of existing data points.  The interpolation 

of data points which divided the “interval into a set of subintervals and constructed a 

lower-degree approximating polynomial on each subinterval” (Guenther, 2002).  

Basically cubic splines look for cubic polynomials that approximate the curve between 

each pair of data points.  For example, given tested input sizes of approximately 1, 5, 10, 

15, 20, etc. for a random file with encryption scheme of AES 128-bit with no 

compression, the cubic spline from MatLab would output the encryption time and output 

encrypted file size for other non-tested input sizes (for example 13 or 67 MB) for that 

particular encryption scheme.  

The mathematical calculations used by the MatLab spline involve a “unique 

piecewise cubic polynomial with two continuous derivatives with breaks at all interior 

data sites except for the leftmost and the rightmost one (the endpoints)” (MatLab) for 

each data point requested.  The cubic spline function searched for continuity between the 

data points by solving for the following: 

( ) [ ]1 ,nS t C a b−∈  

where n = 3, a and b are endpoints (Spline Website). 

Since the cubic spline data interpolation sought to find a data point based upon the 

data results from Step One, cubic splining had two constraints placed on it to prevent 

errors from cubic splining data points outside of the tested data ranges.  The first 
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constraint is that if compression (bzip2, zlib, or zip) was required, then only execute 

cubic spline for key sizes of 1024 or 128.  The next constraint was that if the request was 

a non-random file then cubic spline was only executed for files under 32MB with key 

sizes of 1024 or 128.  

3.3.4  Output File Size and Encryption Time Determination. 

There were three different functions (MatLab files) for determining the encrypted 

output file size and the encryption time, runCryptGrav, runCryptGrav2, and 

runCryptGrav3.  All of these files include data interpolation and the encrypted output file 

size and encryption time based upon parameters passed into the function.  The 

runCryptGrav functions were used by the MatLab controller for optimizing the data as 

seen in Figure 5 from Section 3.3.1. 

3.3.4.1   runCryptGrav. 

The runCryptGrav function determined which commodities (each commodity 

included a file size and a priority for the file size) could be sent based upon the available 

CPU and available bandwidth for the security algorithm requested.  The input arguments 

for runCryptGrav were the combined matrix from the gpgTester runs, the available CPU 

in seconds, available bandwidth in bytes, the required security algorithm (included the 

key size, compression required, and randomness of file), and the matrix of commodities 

that were requested (which included the priority and the input file size for each 

commodity).  The function prioritized the goodness or value (ranged from 0 to 100) of 

the commodity, the higher the goodness then the higher the priority of what should be 

sent.  After interpolating the encrypted file size and encryption time via cubic splining, it 
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aggregated the commodities (based upon the priorities) that could be sent within the 

available CPU and available bandwidth.  This function’s output was a matrix of the 

maximum commodities ready for transmission in which the aggregated encrypted file 

size and encryption time did not exceed the available CPU and bandwidth for the 

specified encryption scheme. 

3.3.4.2   runCryptGrav2. 

 Unlike runCryptGrav, the function runCryptGrav2 only had two input parameters: 

the matrix of collected data from gpgTester and the matrix of communication 

commodities which include the commodity goodness values (priorities) and file sizes.  

Through data interpolation using cubic splines, runCryptGrav2 outputted the encrypted 

file size and encryption time for all commodities sent to it.  It did not determine if the 

aggregated commodities exceeded the available bandwidth and CPU as the function 

runCryptGrav did. 

3.3.4.3   runCryptGrav3. 

 This function was used by inputCrypt3 to prepare output data for network 

simulations.  Similar to the other runCryptGrav functions, it used cubic spline to 

interpolate the data sent to it.  It’s input and output parameters were similar to 

runCryptGrav2.   

3.4 MatLabController (Step Three) 

3.4.1 Overview of MatLab Controller. 

The interpolated data found in Step Two was used as input to create the different 

MatLab controllers.  The controllers received the list of commodities (file sizes and 
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priorities) and sent these commodities to the interpolator (Step Two) to determine the 

actual encryption times and encrypted file sizes for the commodities.  In addition to the 

interpolated data and the list of commodities, the controllers also used encryption scheme 

information to determine via optimization which commodities could actually be 

transmitted based upon the available bandwidth and CPU.  There were four different 

types of controllers, inputCrypt (Controller One), inputCrypt2 (Controller Two), and 

inputCrypt3 (Controller Three), and Controller Four.  Different MatLab functions were 

created to assist the controller in its optimization.  The main functions were for creating 

the commodities, determining security and performance levels, and executing a binary 

integer solver for optimizing.  Some functions were used by more than one controller to 

meet the objectives of the function.  Figure 6 shows a graphical representation of the 

major functions (MatLab files) used by the various controllers. 
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Figure 6.  MatLab Controller Overview 

3.4.2 Random Distribution of Commodities. 

To generate commodities (each commodity had two elements in it, file size and 

priority) with various file sizes and priorities, an inputCommodities function was used by 

Controller One and Controller Two.  The number of commodities requested by Controller 
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One and Two was sent into this function to create the matrix of commodities.  A sample 

commodity matrix is shown below: 

Table 2.  Sample Commodity Matrix 
File Size in Bytes Priority 

1,315,040 99 

5,506,693 69 

63,238,192 71 

95,328,065 3 

 

The data output from gpgTester included file sizes from 1MB to 1000MB, 

however, for the controllers only file sizes from 1MB to 100MB were used.  This 

reflected more realistically with actual files used for transmissions.  Rarely would file 

sizes of 1000MB be encrypted and sent.  In addition, most files would be closer to the 1-

20MB size as opposed to the 80 – 100Mb size.  To randomly generate file sizes that meet 

the above characteristics, a gamma random number distribution was used, which generate 

non-negative random numbered file sizes.  Randomly generated numbers via a gamma 

distribution “provide a fairly flexible class for modeling nonnegative random variables” 

(Rice, 1995) and allow for a distribution that was similar to a reverse exponential 

histogram. 

Gamma distribution was theoretically based on the gamma function, a 

mathematical function defined in terms of an integral (Milton and Arnold, 2003).  The 

general gamma distribution that MatLab used for the function, gamrnd, was 

33 



 

( ) ( )
1 tg t t e

α
α λλ

α
− −=

Γ
, t ≥ 0 

The above gamma distribution uses the gamma function, Γ , whose formula was 

( ) 1

0

x ux u e du
∞

− −Γ = ∫ , x > 0 

To generate random numbers with a heavier distribution between 1 and 100 MB, 

the shape and the scale of the gamma distribution were modified.  The shape, α , changed 

the shape of the density function while the scale, λ , changed the units of measurement.   

For the gamrnd MatLab function, shape was .75 and the scale was 65.  If the numbers 

were not between 1 and 100MB, then it was not added to the list of commodities.   

The value or priority for the commodity was a uniformly distributed random 

number (i.e. all values had an equal probability of occurring) ranging from 1 to 100.  The 

density function for this uniform distribution was 

( ) 1f x
n

=  

where n was a positive integer. 

Each number generated was rounded up to the next integer to yield random 

numbers between 1 and 100.   

The output commodity matrix (file size and associated priority) was returned to 

the calling function, either inputCrypt or inputCrypt2. 
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3.4.3 inputCrypt Controller (Controller One) 

 This function, inputCrypt, was the simplest of the controllers.  It read in an input 

file and based upon the data in this file, outputted the randomly generated commodities 

that would fulfill the restrictions.   

 A sample input file is shown in Table : 

Table 3.  Sample Input File for Controller One 
Available 

Bandwidth 

in MB 

Available 

CPU in 

Seconds 

Number of 

Commodities 

Security 

Level 

Performance 

Level 

120 3000 20 4 3 

100 2400 30 5 2 

90 2000 40 1 1 

200 1900 57 2 1 

50 4000 60 3 2 

300 6000 70 4 2 

70 3400 83 5 3 

75 2000 90 3 3 

30 1900 100 2 2 

20 3000 26 1 2 

 

 For each line in the file, Controller One via the inputCommodities 

function created the required number of commodities.  Each commodity included the file 
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size and the priority for the commodity.  The file sizes were randomly generated via a 

gamma distribution while the priorities were randomly generated via a uniform random 

distribution.  Next, Controller One used the security level and performance level required 

(read from the input file) to determine which encryption algorithm(s) to use by calling the 

indeSecurity function.   

The indeSecurity function took in the desired security level and performance level 

and outputted the encryption algorithm to use and the key size.  The security level ranged 

from high security (5) to low security (1) whereas the performance level ranged from 

high (3) to low (1).  Security level was 5 for High Security, 4 for Medium High, 3 for 

Medium, 2 for Medium Low, and 1 for Low.  The performance level was 3 for fast 

performance, 2 for medium performance, and 1 for slow performance.  Figure 7 shows 

the conceptual idea of security and performance dials for a dialable cryptographic 

controller. 

 

Figure 7.  Dial Settings for Controller One 
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Once the encryption algorithm and key sizes were determined from the function 

indeSecurity, Controller One calls the runCryptGrav from Step Two with the input 

parameters.  The input parameters were the commodities (input file size and priority), 

encryption algorithm, key size, available bandwidth, and available CPU.  The 

runCryptGrav calculated the encryption times and output encrypted file sizes for the 

commodities that could be sent.   

The output matrix from the runCryptGrav served as a decision tool for the 

Controller One (inputCrypt).  Normally there was more than one output matrix because 

the security and performance settings had more than one encryption scheme associated 

with it.  The inputCrypt controlled which scheme was the best one to use.  It first 

maximized the number of commodities to be sent, then chose the smallest combined 

encryption time for the commodities, and finally the greatest output file size.  For 

example if there were three different encryption algorithms available, but one encryption 

line could send nine commodities but another could only send 5, then the controller 

would chose the encryption algorithm that yielded nine commodities.  However, if two 

different encryption algorithms yield the same number of commodities, then the 

controller would chose the one with the smallest combined encryption time.  

Finally, inputCrypt wrote the output commodities to a file for the user.  The 

output file repeated the available bandwidth, available CPU, number of commodities, 

security level, and performance level used.  In addition, it wrote out the requested 

commodities (input file size and priority), the list of commodities that could be sent 

(input file size, priority, output encrypted file size, and encrypted time), encryption 
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algorithm and key size used, the total goodness (sum of the chosen commodities’ 

priorities) of the commodities, the total bandwidth required, and the total encryption time 

needed. 

3.4.4 inputCrypt2 Controller (Controller Two) 

 Controller Two introduced binary integer programming to determine the best 

encryption algorithms to use.  “Binary integer programming problems involve 

minimizing a linear objective function subject to linear equality and inequality 

constraints.  Each variable in the optimal solution must be either a 0 or a 1.  The MatLab 

Optimization Toolbox solved these problems using a branch-and-bound algorithm that 

searches for a feasible binary integer solution, updates the best binary point found so far 

as the search tree grows, and verifies that no better solution is possible by solving a series 

of linear programming relaxation problems” (MatLab Website).  The controller did not 

use the concept of security and performance levels but rather presented seven encryption 

algorithms per commodity for the binary integer solver to optimize.   

 In this section, the idea of binary choice (either 0 or 1) referred to whether or not 

the commodity could be sent (0 if not sent and 1 if sent).  The decision was represented 

by a binary variable x.  The object was to maximize 'f x  such that Ax b≤ .   

 Each commodity was assigned to an x such that {1

0
jx = .  The priorities (also 

known as values) of the commodities were used as weights for the binary integer 

programming as the objective coefficients function, f.  The total net value of the decisions 

were represented by 'f x  or .    Ζ
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 Because MatLab works with only matrix manipulations, all data was changed into 

the appropriate matrix form.   

 Different commodities were tested using seven encryption algorithms with key 

size of 1024 for public key and 128 for symmetric key (e.g. if there were 30 

commodities, then the solution would try to maximize with 210 (30 x 7) commodities).   

 The general commodity matrix for n commodities would be: 

1 1 11 11 12 12 17 17

1 1 2 2 7 7n n n n n n n n

i p s t s t s t
c

i p s t s t s t

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

The first column, (i), was the input file size, the second column, (p), was the priority of 

the commodity, the rest of the columns represented the output encrypted file size (s) and 

encryption time (t) for each of the seven algorithms tested. 

 The general matrix equation for f (the vector containing the objective function 

coefficients) was 

1

*7n

p
f

p

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

where the vector, f, corresponded to the priorities in the commodity, c, matrix .  Notice 

that f had seven times more variables than the number of commodities to account for the 

seven different encryption algorithms per commodity. 

 The general b vector (right hand side values of Ax b≤  ) was 
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where BW represents available bandwidth in bytes and CPU represents available CPU in 

seconds.  The 1’s represent the at-most value for each commodity (only at most one of 

the seven encryption algorithms can be chosen for each commodity). 

 The general A matrix, constraint coefficient matrix, was: 

*7

*7

*7

*7

1 *7

1 *7

1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

n

n

n

n n n n n n n n n n

n

n

A

size size
time time

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

The function chose at most one encryption algorithm out of seven available for each 

commodity, therefore each commodity row had seven consecutive ones in it.  The last 

two rows were the encrypted file size and encryption time for each commodity’s 

encryption algorithm. 

 The general solution for n commodities was 1 1 2 2 *7 *7n nf x f x f xΖ = − − − −  

which sought to maximize the function, Ax b≤ , to find the x variables.   

 The general x vector solution was:  
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where each xn was either a 0 or 1 with the imposed constraint that each commodity row 

from A had at most one x=1.   

 The above explanations were for commodities with seven available algorithms to 

choose from.  For example (to show how Controller Two worked), given four 

commodities (each commodity includes file size and priority for commodity) with two 

encryption schemes available for each commodity, an available bandwidth of 119, and an 

available encryption time of 79, (not actual data numbers used for this example), the 

commodities would be sent to the interpolator to determine encrypted file size and 

encryption time for the two encryption schemes for each commodity.  The interpolated 

data would be included in the commodities matrix, c.  In addition to this matrix, the other 

matrices would be created prior to calling the binary integer programming function: 

10 22 15 31 17 38
20 32 25 41 27 48
30 42 35 51 37 58
40 52 45 61 47 68

c

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠
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f

⎛ ⎞
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⎜ ⎟
⎜ ⎟
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⎜ ⎟
⎝ ⎠
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1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

15 17 25 27 35 37 45 47
31 38 41 48 51 58 61 68

A
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⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

 A constraint placed on the binary function was that only one of the encryption 

algorithms could be used per commodity, i.e. mutually exclusive with at most one 

encryption algorithm chosen.  Another constraint was that the sum of all the 

commodities’ output encrypted file sizes had to be less than the available bandwidth.  

Furthermore, the sum of all of the commodities’ encrypted times had to be less than the 

available CPU.  These three constraints were reflected in the above sample matrices.   

 When the function was called, it attempted to maximize the number of x’s (1s) for 

the four commodities.  A detailed explanation of the binary integer programming follows 

based upon the above matrices.   

10 22 15 31 17 38
20 32 25 41 27 48
30 42 35 51 37 58
40 52 45 61 47 68

c

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

The above matrix is the commodity matrix with the first column representing the input 

file size, 2nd column represents the value placed on each commodity, the 3rd column is the 

output encrypted file size for encryption algorithm A, the 4th column is the encryption 

time for algorithm B, the 5th column is the output encrypted file size for algorithm B, and 

the last column is the encryption time for algorithm B.    
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The above vector is the vector containing the objective function’s coefficients.  It is 

weighted with the values from c, the commodity matrix.  Because each commodity has 

two available encryption algorithms, there are eight variables instead of four variables 

(similar to having eight separate commodities: four commodities with two different 

encryptions).  Each value is used twice to represent the duplicated commodities.  

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

15 17 25 27 35 37 45 47
31 38 41 48 51 58 61 68

A

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

The above matrix, A, is the primary matrix.  It contains the constraints’ coefficients.  It 

sets the stage for mutual exclusions for the commodities.  Each commodity is a row in the 

first four rows of the matrix.  The function will determine which encryption algorithm to 

choose for the commodity. It will choose at most one encryption algorithm per 

commodity (for mutual exclusion there are two 1’s per commodity row to reflect the two 

available encryption algorithms).  The last two rows represent the commodity’s file size 

and encryption time respectively.    
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This vector sets the limits for the function, Ax b≤ .  This vector, b, holds the right-hand 

side values for each constraint in the constraint matrix, A.  The first eight rows (ones) 

represent the eight different commodities.  The second to last row is the available 

bandwidth and the last row is the available CPU.  

 When the binary integer programming function is called it seeks to maximize the 

following equation for eight commodities and two encryption algorithms:  

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8f x f x f x f x f x f x f x f xΖ = − − − − − − − −

1 2 3 4 522 22 32 32 42 42

 or more specifically for this 

example: 6 752 52 8x x x x xΖ = − − − − − − x x− − x  via a branch and 

bound method.  The output binary solution, x, is: 

0
1
1
0
0
0
1
0

x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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Each line in the vector, x, represents whether or not the commodity can be sent (1 for 

sending and 0 for not sending).  Notice that for each commodity (originally four but 

working set is eight) only one encryption algorithm is chosen per commodity.  

Commodity 1 is the first and second rows of x, commodity 2 is the 3rd and 4th rows, 

commodity 3 is the 5th and 6th rows, and commodity 4 is the 7th and 8th rows.  A line by 

line analysis of x shows that only commodity 1, 2, and 4 can be sent using encryption 

algorithm A for commodities 1 and 4 and encryption algorithm B for commodity 2. 

Unfortunately, the binary integer function included with the MatLab Optimization 

Toolbox, bintprog, produced erratic results for large commodities.  Therefore, an add-on 

to the MatLab software was used to perform binary integer programming.  This add-on 

was glpk with the glpk mex interface for MatLab.  The same principles for bintprog 

applied to glpk, however, glpk was stable for large commodities (Yalmip Website).   

 Similar to Controller One, this Controller Two also generated random 

commodities for the input file size and priority.  See Section 3.3.3 for an explanation of 

this random generation.   

 Controller Two called the runCryptGrav2 with just two parameters, the 

commodities and a matrix of the compiled data from gpgTester.  Prior to sending the 

parameters to runCryptGrav2, seven security lines were added to each line of the 

commodity.  This security line included the encryption algorithm, key size, and non-

compression requirement.  The security lines were the following: 
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• 3DES 128 bit 

• AES 128 bit 

• BlowFish 128 bit 

• CAST5 128 bit 

• TwoFish 128 bit 

• ElGamal 1024 bit 

• RSA 1024 bit 

 

It was not necessary to provide the available bandwidth nor available CPU to 

runCryptGrav2 because the binary integer function coded into Controller Two searched 

for the optimal solution using the available CPU and available bandwidth as part of the b 

vector. 

 The output from runCryptGrav2 was a matrix of the commodities sent to it, output 

encrypted file size, and encryption time.   

 From this matrix, the glpk (binary integer solver), optimized the data.  The solver 

was restricted to only using one encryption line per commodity.  Also, the solver 

searched for solutions that would not exceed the available bandwidth and available CPU. 

 The Controller Two read data from a file for the input.  The data included the 

available bandwidth, available CPU, and the number of commodities.  A sample input 

file is shown in Table 4. 



 

 

Table 4.  Sample Input File for Controller Two 
Available 

Bandwidth 

in MB 

Available 

CPU 

In Seconds 

Number 

of 

Commodities 

120 3000 4 

100 2400 8 

90 2000 12 

200 1900 5 

50 4000 20 

300 6000 10 

70 3400 3 

75 2000 25 

30 1900 9 

20 3000 6 

120 3000 20 

100 2400 30 

90 2000 40 

 

The output from Controller Two was sent to an output file.  The output was 

similar to Controller One’s output.  The output included the requested commodities 

(input file size and priority), the list of commodities that could be sent (input file size, 
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priority, output encrypted file size, and encryption time), encryption algorithm and key 

size used, the total goodness (sum of the chosen commodities’ priorities) of the 

commodities, the total bandwidth required, and the total encryption time required to send 

the commodities. 

3.4.5 inputCrypt3 Controller (Controller Three). 

 Controller Three was used as a basis for NS-2 simulations.  The input files to the 

controller and the output files from this controller were in the same format as required for 

NS-2.  It merged the binary integer programming from Controller Two with the security 

and performance levels of Controller One.   

 Unlike the other two controllers, it read in a file to determine the commodities 

(instead of randomly generating the commodities) that should be sent based upon the 

parameters in the file.  The input parameters in the file included the available bandwidth 

and available CPU.  In addition, each commodity included the commodity number, input 

file size, the priority of the commodity, the security level, and performance level.  A 

sample input file is shown in Table 5.  The first row of the table shows the available 

bandwidth and the available CPU.  The next three columns (0) of the first row are 

placeholders to ensure matrices are formed correctly for MatLab.  The next rows show 

the parameters for each commodity:  commodity number, input file size, the priority of 

the commodity, the security level, and performance level. 
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Table 5.  Sample Input File for Controller Three 
100 2400 0 0 0 

1 10 60 3 1 

2 15 28 2 2 

3 30 90 3 3 

4 5 30 2 1 

5 50 15 4 2 

6 60 75 1 1 

7 3 90 5 3 

8 22 49 2 2 

9 20 74 2 3 

10 44 38 5 2 

  

 Each security level and performance level associated with three possible 

encryption schemes, therefore each commodity was tripled to account for three 

encryption schemes.  For example, the last row of Table 5 is for commodity 10 with file 

size 10 and priority 38.  The security level, 5, and the performance level, 2, converted to 

ElGamal with key size 3584, RSA with key size 3840, and RSA with key size 3584.  

 The commodities were sent to the runCryptGrav3 with the encryption schemes.  

The output from runCryptGrav3 (the encrypted file size and encryption time for each 
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commodity based upon the encryption scheme) was used as the input for the binary 

integer function.   

 Instead of seven different encryption schemes as in Controller Two, there were 

only three encryption schemes.  However, for Controller Three, the range of encryption 

algorithms with key size (768 – 4096 for public key and 128 – 256 for symmetric key) 

was greater than with Controller Two.  (Controller Two only used key sizes of 128 or 

1024 for the seven encryption algorithms.) 

 As part of the binary integer programming (see Section 3.4.4 for a detailed 

explanation of how the research utilized binary integer programming) the commodity 

matrix, c, for n commodities was (all commodities were tripled to account for three 

encryption algorithms per commodity):  

1 1 11 11 12 12 13 13

1 1 2 2 3 3n n n n n n n n

i p s t s t s t
c

i p s t s t s t

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 The general coefficient matrix, f, for n commodities was  

1

*3n

p
f

p

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 The coefficient matrix was used to solve 1 1 2 2 *3 *3n nf x f x f xΖ = − − − −  

equation to maximize the x’s.  The solver was confined by the constraint’s equation, 

Ax b≤ , where A, x, and b respectively were: 
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The vector, b, includes the available bandwidth and CPU from the inputted file.  The 

vector, x, corresponds to the commodities that can be sent.  If x=1, then the commodity 

can be sent, however, if x=0, then the commodity will not be sent.  In addition, the 

matrix, A, enforced mutual exclusion (at most one) for the three different encryption 

schemes. 
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The output from this controller was sent to a file in the same format as would be 

sent to the NS-2 for simulations.  The output was a matrix of the commodities (including 

original commodity numbers) that could be sent based upon the available bandwidth and 

CPU.   

3.5 NS-2 Simulations (Step Four) 

 The final step after creating the controllers were to simulate commodities received 

from a network node.  The network simulator, NS-2, simulated a small wired network of 

up to 10 nodes.  Although the thesis is focused on wireless networks, the data gathered 

from the network simulator applied to a wireless network.  Because NS-2 runs in a non-

Windows environment while MatLab runs in a Windows environment, an executable 

MatLab file was required to transfer information between NS-2 and MatLab.  For Step 

Four, the executions were completed in a Linux environment.   

The controller created for Step Four was the exact same controller as Controller 

Three with some minor modifications.  This new controller was called encryptFitter.  One 

minor modification was an adjustment from file size to packet size.  Other modifications 

were to align the controller’s code with the format required by NS-2.   

The NS-2 simulations were one extension of a research topic by John Pecarina 

(Pecarina, 2008).  Pecarina’s research focused on creating an agent based framework to 

maximize information available at network nodes.  The research included a Hybrid Agent 

for Network Control (HANC) network simulator which controlled the routing decisions 

for the nodes by polling the network for information.  The MatLab Controller Four was 
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integrated into HANC to expand the information available at each node to include 

commodities, security level, performance level, and available bandwidth and CPU.   

With NS-2, the network nodes were concerned with sending packets and not 

actual files. Each node knew how much bandwidth was available on each available 

network path and the destination for the packets.  A simple network diagram is shown in 

Figure 8 with the associated bandwidth available for each network path. 
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Figure 8.  Simple Network Diagram 

Because of this specification, all input file sizes were considered in Bytes and not 

MegaBytes.  All data gathered from Step One, gpgTester, was from file sizes of greater 

than 1MB.  To actually interpolate and optimize the data for packet sizes, the data was 

multiplied by 1MB.  After interpolation and optimization, the encryptFitter divided by 
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1MB, to return the data back to packet sizes.  This assumed that multiplying the file by 

1MB would yield the correct interpolated/optimized data (e.g. 100 Bytes would yield the 

same results as 100Bytes multiplied by 1MB).  Although this was not necessarily a 

reasonable assumption, it did allow for direct integration into HANC. 

NS-2 via HANC wrote data to a file (encryptin.m) which was read by the MatLab 

controller for optimizing the data.  Once MatLab completed optimizing the data via 

interpolation and binary integer programming, it wrote data to a different file 

(encryptout.m) for NS-2’s HANC to read.  This circular transfer was completed 

repeatedly for the simulations.  Figure 8 is a high level view of this transfer. 

 

Figure 9.  NS-2 and MatLab Transfer of Information 

The encryptin.m file held the parameters for the MatLab controller.  When the file 

was ready to be read, MatLab, encryptFitter (Controller Four), read it and then called the 

runCryptGrav4 program to interpolate the data.  Finally, encryptFitter executed a binary 

programming solver to optimize the data.  The results were written into the encryptout.m 
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file which was then read by NS-2 when available.  The results included commodities 

numbers (flow numbers) that could be sent, the encrypted file sizes, and encryption times.  
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IV.  Analysis and Results 

4.1 Analysis Overview 

The research was divided into four separate parts, the gpgTester executions (Step 

One), data interpolation (Step Two), data optimizing (Step Three), and NS-2 simulations 

(Step Four).  Each section yielded results for analysis and also for input into the 

subsequent steps.   

4.2 gpgTester Results (Step One) 

 The gpgTester program, written in C++ as a front end into gpg, ran 

different encryption scheme scenarios thirty times each.  The different scenarios varied in 

cryptographic algorithm, file size, key strength, and compression.  The symmetric key 

algorithms were 3DES, AES, BlowFish, CAST5, and TwoFish.  The key size used was 

128 bit for all of them.  In addition, AES was tested with 192 and 256 bit encryption 

because gpg allowed 3 different key sizes (128, 192, and 256) for AES only.  The public 

key algorithms were RSA and ELG-E with different key sizes from 1024 and 4096, with 

Elg-E having an additional 768 key size. 

The results from gpgTester were fed into Microsoft Excel files.  There were 256 

separate Excel files generated via the testing.  Each encryption scenario was run 30 times.  

A sample output of the 30 runs is listed in Table 6 for a 1MB ELG-E with 1792 key size. 



 

Table 6.  Elg-E Sample Output from gpgTester 
Pub type Pub size Sub type Sub size
RSA 1792 ELG-E 1792

Run Time Input Size Output Size
Decryption 
Time

Decryption 
Size

1 150 1048576 1049123 170 1048576
2 140 1048576 1049123 170 1048576
3 140 1048576 1049123 170 1048576
4 150 1048576 1049123 150 1048576
5 150 1048576 1049123 170 1048576
6 140 1048576 1049123 160 1048576
7 140 1048576 1049123 160 1048576
8 140 1048576 1049123 170 1048576
9 150 1048576 1049123 140 1048576

10 140 1048576 1049123 160 1048576
11 140 1048576 1049123 170 1048576
12 140 1048576 1049123 170 1048576
13 140 1048576 1049123 160 1048576
14 140 1048576 1049123 160 1048576
15 140 1048576 1049123 170 1048576
16 140 1048576 1049123 160 1048576
17 140 1048576 1049123 160 1048576
18 140 1048576 1049123 180 1048576
19 150 1048576 1049123 160 1048576
20 140 1048576 1049123 170 1048576
21 160 1048576 1049123 170 1048576
22 140 1048576 1049123 160 1048576
23 140 1048576 1049123 160 1048576
24 120 1048576 1049123 170 1048576
25 150 1048576 1049123 160 1048576
26 140 1048576 1049123 150 1048576
27 140 1048576 1049123 170 1048576
28 140 1048576 1049123 170 1048576
29 120 1048576 1049123 160 1048576
30 140 1048576 1049123 160 1048576

Average 
Encryption 
Time 141.333
Average 
Decryption 
Time 163.667

 

Each scenario within gpgTester had a similar output.  For a listing of all of the 

scenarios, see Section 3.2.2 and Table 1 from Section 3.2.2.   
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Some of the 256 separate Excel files held more than 15 different scenarios.  These 

files were combined to form 16 averaged files.  The total number of encryption schemes 

was over 1350 (with each scheme tested 30 times).  A sample spreadsheet showing the 

average encryption time, decryption, and size difference (encrypted file size minus the 

original input file size) is listed in Table 7 for non-compressed and compressed scenarios 

(each line was considered a separate scenario) using AES.  

Table 7.  Sample Averaged Output for AES Scenarios 

Keysize Input Size Output Size
Size 
Difference

Average 
Encryption 
Time

Average 
Decryption 
Time

128 1048576 1048673 97 96 128
128 5242880 5242977 97 259 445
128 10223616 10223713 97 449 820.367
128 15204352 15204449 97 631 1204
128 20185088 20185185 97 822.2 1579.67
128 25165824 25165921 97 1026 1977.33
128 30146560 30146657 97 1218 2367.07
128 35127296 35127393 97 1428 2737.83
128 40108032 40108129 97 1613.9 3118.6
128 45088768 45088865 97 1809.3 3499.7
128 50069504 50069601 97 2009 3877.83
128 55050240 55050337 97 2192 4267.7
128 60030976 60031073 97 2389.47 4623.07
128 65011712 65011809 97 2584.43 5030.4
128 70254592 70254689 97 2783.03 5425.17
128 75235328 75235425 97 2965.33 5809.43
128 80216064 80216161 97 3145.43 6192.3
128 85196800 85196897 97 3363.07 6572.73
128 90177536 90177633 97 3550.33 6938.87
128 95158272 95158369 97 3742.73 7327.03
128 100139008 100139105 97 3923.53 7716.07

bzip2

Keysize Input Size
Average 
Output Size

Size 
Difference

Average 
Encryption 
Time

Average 
Decryption 
Time

128 1162313 188701 -973612 401.667 166.333
128 10437672 2470818 -7966854 2251 1168.33
128 20576925 4740467 -15836458 4404 2215.67
128 31014597 7206106 -23808491 6624 3342.93  
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The analysis of the data from this section included the file comparisons (input file 

size compared to the output encrypted file size), the encryption time, and the decryption 

time.  In general, the stronger key size (longer key) took more time to encrypt and 

decrypt.  

4.2.1 File Size Comparisons. 

Two types of files were used, randomly-generated and non-randomly generated 

files (see Section 3.2.2 for an explanation of how the files were generated).  Each file size 

was tested 30 times.  The average file size difference (the encrypted file size minus the 

original input file size) was calculated for comparisons.  

  4.2.1.1  Non-Compressed File Size Differences 

For the 30 different runs, the file size difference remained the same when non-

compression was chosen (very infrequently, a size difference of 1 could be noticed) 

regardless of the initial size of the file.  In addition, the non-randomly generated file 

difference was less than the randomly generated file size.  For the symmetric key 

algorithms, CAST5, BlowFish, and 3DES had the same file difference (65 Bytes for 

random files and 54 Bytes for non-random files), while TwoFish and AES yielded the 

same result of 97 Bytes for random files or 86 Bytes for non-random files.  Interestingly 

enough, the different key sizes for AES (128, 192, and 256) did not change the file size 

difference.  A sample output for symmetric keys AES, BlowFish, CAST 5, and TwoFish 

is shown in Table 8. 
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Table 8.  Sample File Size Differences for Symmetric Algorithms 

Encryption 

Algorithm Key Size Random 

Input File Size in 

Bytes 

Output File Size 

in Bytes 

File Size 

Difference

in Bytes

AES 128 Yes 1048576 1048673 97

 128 Yes 5242880 5242977 97

 192 Yes 55050240 55050337 97

 192 Yes 60030976 60031073 97

 256 Yes 400031744 400031841 97

 256 Yes 500170752 500170849 97

TwoFish 128 Yes 1048576 1048673 97

 128 Yes 10223616 10223713 97

BlowFish 128 Yes 80216064 80216129 65

 128 Yes 85196800 85196865 65

CAST5 128 Yes 70254592 70254657 65

 128 Yes 80216064 80216129 65

AES 128 No 1162313 1162399 86

 128 No 10437672 10437758 86

TwoFish 128 No 20576925 20577011 86

 128 No 31014597 31014683 86

BlowFish 128 No 20576925 20576979 54

 128 No 31014597 31014651 54

CAST5 128 No 1162313 1162367 54

 128 No 10437672 10437726 54
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When compared to the public key algorithms, all of the symmetric key algorithms 

had a significantly smaller file size difference.  Figure 10 shows a comparison of the file 

size differences for the symmetric and public key algorithms. 
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 Figure 10.  File Size Differences for Random Files 

Unlike AES, the increase in key size increased the file size differences for RSA 

and ELG-E.  For example, Elg-E with key size 768 had a smaller file size difference than 

Elg-E with 1024 key size.  Of the two public key algorithms, RSA had smaller file size 

differences than ElGamal for all key sizes between 1024 and 4096 (RSA was not tested at 

key size 768).  Figure 11 shows the file size differences for RSA and ElGamal for the 

different key sizes (all file size differences were greater than the symmetric key 

differences).   
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Figure 11.  Comparison of Public Key File Size Differences 

Similar to the symmetric key algorithms (AES, 3DES, CAST5, BlowFish, and 

TwoFish,), the file size differences were slightly less for non-randomly generated files.   

For example, RSA with 1024 key size was 213 Bytes (file size difference) for a non-

random file size as opposed to 224 Bytes for a randomly-generated file.   

  4.2.1.2  Compressed File Size Differences 

The compression of the input file sizes greatly impacted the resulting file size 

difference especially for randomly generated files.   

The compression of randomly generated files actually yielded a larger file than a 

non-compressed file.  Two reasons for this are that the compression algorithms (bzip2, 

zip, and zlib) were based upon patterns within the files (no patterns mean less 

compression) and that the compression utility itself adds overhead to the outputted 

encrypted file.  The randomly generated files showed little repetitive patterns in the file 

size differences except for the zlib test scenarios (for non-compressed, the same file size 
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difference could be seen regardless of initial file size).  A sample comparison of non-

compressed versus compressed file size differences is shown in Table 9 for randomly-

generated files using TwoFish. 

Table 9.  Sample Random File Size Difference Comparison 

TwoFish 

Input File Size in 

Bytes 

Output File Size in 

Bytes 

File Size Difference

in Bytes

Non-Compressed 1048576 1048673 97

 10223616 10223713 97

 20185088 20185185 97

 30146560 30146657 97

 40108032 40108129 97

 50069504 50069601 97

bzip2 1048576 1053868 5292

 10223616 10273894 50278

 20185088 20283678 98590

 30146560 30293862 147302

 40108032 40303630 195598

 50069504 50313807 244303

  

 The above table shows the file size difference as constant for non-compressed 

(discussed in the previous section), however, with the compression algorithms, there were 

no constant file size differences.  As the input file size increased, the file size difference 

increased (significantly) as well.  On the other hand, for non-randomly generated files, 

the file size difference for compression actually decreased because the compression 

utility was able to actually compress the file by finding patterns within the text of the file.  
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Table 10 shows a sample output file size difference for non-randomly generated files for 

TwoFish using non-compressed and bzip2 compression. 

Table 10.  Sample Non-Random File Size Difference Comparison 

TwoFish 

Input File Size 

in Bytes 

Output File Size in 

Bytes 

File Size Difference in 

Bytes 

Non-Compressed 1162313 1162399 86

 10437672 10437758 86

 20576925 20577011 86

 31014597 31014683 86

bzip2 1162313 188688 -973625

 10437672 2470819 -7966853

 20576925 4740311 -15836614

 31014597 7206048 -23808549

 

 The random graph for the file size differences (sample graph for RSA is shown in 

Figure 12) show that bzip2 yielded the greatest file size difference (biggest output 

encrypted file size) while zlib was the smallest (i.e., zlib was better at compressing 

randomly generated files). 
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Figure 12.  RSA Random File Size Compression Comparisons 

 The other cryptographic algorithms would display graphs similar to the above 

graph.  The uncompressed output file sizes were far below the other compressed files and 

the uncompressed file size difference remained the same for the algorithm despite input 

file size increases, unlike the compressed algorithms.  Zlib exhibited the smallest output 

file size difference for compression algorithms followed by zip.   

For the non-random file sizes, bzip2 outperformed the other compression utilities 

(zip and zlib) for compressing the files (i.e. a higher negative number corresponded to a 

smaller compressed file).  Zip was better than zlib for compressing random files.  The 

files compressed created a significantly smaller file as can be seen by the negative 

outcomes in Figure 13.  The graph was representative of the other algorithms because 

there was no significant difference between the algorithms. 
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Figure 13.  RSA Non-Random File Size Compression Comparisons 

Since the file size differences were not constant for compressed utilities, 

comparisons between the algorithms were done via the standard deviations.  The standard 

deviation for non-compression was always 0 because there was no variation in the file 

size differences for the different input file sizes for each encryption scenario.  The 

standard deviations between the file size differences for RSA were similar to ELG-E, 

while the file size differences for 3DES, AES, BlowFish, CAST5, and TwoFish were 

very similar as well.  Because of the similarities between RSA and Elg-E and between the 

symmetric algorithms, the next two graphs only show the compression comparisons for 

RSA and 3DES for randomly-generated files. 
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RSA Random File Size Deviations
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Figure 14.  RSA Random File Size Difference Standard Deviation 
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Figure 15.  3DES Random File Size Difference Standard Deviation 

As the above graphs illustrate, for all algorithms, zlib’s standard deviation for the 

30 different runs for each scenario was zero or very close to zero, consequently, zlib was 

more predictable.  The standard deviation for zip was also predictable because its’ 
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68 

standard deviation remained nearly constant at under 100 while the standard deviation for 

bzip2 increased mostly for each size increase.   

When the files were not random, the standard deviations displayed more 

characteristic differences.  Primarily, the standard deviations for zip and zlib were very 

close to 0 (more predictable), while the bzip2’s standard deviation showed increases and 

decreases.  The following input files sizes were used for the non-random testing: 

• 1162313 • 20576925 

• 10437672 • 31014597 
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Figure 16.  Non-Random RSA File Size Difference Standard Deviations 

Not only did bzip2 show non-predictability within RSA, it also showed non-

predictability with the other algorithms as Figure 17 illustrates.   



 

bzip2 Non-Random File Size Deviations
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Figure 17.  Bzip2 Non-Random File Size Difference Deviations  

All of the algorithms had a significant spike for the average output file size of 

approximately 4740400B or 4.7MB (which corresponds to input file size 20576925B or 

20.6MB).  This could be attributed to the memory of the computer used.  Depending 

upon the virtual memory available, the compressions under the available virtual memory  

could fit into memory but greater than this would require swapping files out of primary 

memory for compressing.  In order to fit completely into memory, the size of the file 

would have to be less than the available virtual memory (other data resides in memory 

besides what is needed for encryption and compression).  The CAST5 had the most 

significant disparities beginning with 51 Bytes standard deviation for the 188701 (.2MB) 

output file size and ending with an 11 Byte standard deviation for the greater output file 

size (7206106 (7.2MB)).  AES had the smallest standard deviations for the different 

output file sizes.  TwoFish had the highest discrepancy for the output file size of 

approximately 7206000 (7.2MB).   
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 4.2.2 Encryption and Decryption Results.  

The encryption time for each scenario was measured from the beginning of the 

encryption process until the end of the encrypting process.  Overall the symmetric key 

algorithms required less time to encrypt the files than the public key algorithms.   

  4.2.2.1  Encryption and Decryption Results for Non-Compressed Files. 

Although 3DES, CAST5, and BlowFish were better on file differences for 

random files (see Figure 10 from Section 4.2.1.1), they did not have better encryption run 

times.  In fact, 3DES had the longest running time as shown in Figures 18 and 19. 
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Figure 18.  Symmetric Encryption for Random Files to 100MB 
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Figure 19.  Symmetric Encryption for Random Files to 100MB 

In addition, AES with 128 bit encryption had the fastest encryption times.  In fact, 

AES with larger key sizes of 192 and 256, had faster encryption times than the 128 bit 

TwoFish, BlowFish, CAST5, and 3DES.  TwoFish was only slightly better than CAST5 

for encryption times.  All of the symmetric algorithms increased encryption times with 

increase input file size.  Table 11 shows a comparison of the symmetric key algorithms. 
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Table 11.  Symmetric Encryption (msec) for Random File Sizes 
Input

(MB) CAST5 BlowFish TwoFish AES 128 AES 192 AES 256 3DES

1 106.667 128.333 105.667 96 101.333 103 141.667
5 318 411.333 322.333 259 274 290 474

10 557 738.367 554.667 449 482.333 514.333 868.333
15 797.167 1080.37 802.9 631 688.7 736.333 1251.67
20 1048.67 1408.37 1039.33 822.2 892.667 963.7 1650.33
25 1303.37 1747 1292 1026 1097.67 1189.67 2044
30 1575.97 2106.67 1549.07 1218 1337.67 1423 2444.33
35 1819.67 2439.33 1814.3 1428 1531.07 1663.67 2843.03
40 2074.67 2781.33 2051 1613.9 1749.6 1899.03 3236
45 2314.77 3113.43 2310.37 1809.3 1957.33 2115.33 3628.67
50 2561.63 3452.67 2567.33 2009 2173.33 2339.77 4041
55 2802.67 3794.43 2800.7 2192 2372.83 2560.6 4443.1
60 3066.4 4139 3035 2389.47 2577.97 2784.67 4816
65 3311.6 4456.37 3275.4 2584.43 2798.33 3011.03 5235.9
70 3572 4837.33 3542.33 2783.03 3023.33 3228.33 5627.33
75 3848.87 5162.67 3768.67 2965.33 3238.77 3450.33 6030.7
80 4074.13 5490.9 4005.53 3145.43 3439.63 3687.33 6441
85 4331.67 5840 4246 3363.07 3646.67 3920.5 6838.2
90 4600.67 6165.37 4504.03 3550.33 3878.03 4158.57 7230.33
95 4832.43 6529.77 4770.83 3742.73 4093.63 4350.4 7626.63

100 5096.5 6839.47 5000.4 3923.53 4289.03 4584.73 8020.43
200 10066.8 13628.7 9907.77 7808.03 8461.03 9054 15960.3
300 15031.7 20423.6 14865.8 11625.1 12689.4 13630.5 23955.3
400 19987.5 27164.8 19842.2 15510.5 16875.9 18144 31890.1
500 24965.5 33907.2 24772.1 19403.3 21040 22655 39833
600 29935.3 40620.6 29650.1 23251.9 25260.2 27165.9 47828.3
700 34987.5 47430.7 34595.8 27073.1 29429.5 31648.9 55888.9
800 39982.7 54270 39445.7 30911.8 33657.4 36230.4 64025
900 45072.8 61130.2 44541.1 34801.4 37779.6 40814.2 71994.6

1000 49980.9 67937.3 49458 38589.3 41980.8 45302.9 79918.2
 

For symmetric decryption results, the same order for encryption speed was seen in 

decryption speed.  AES 128 had the fastest decryption times, followed by AES 192, AES 

256, TwoFish, CAST5, BlowFish, and lastly 3DES.  
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For public encryption algorithms, RSA performed better than ElGamal for higher 

key sizes.  ElGamal had faster encryption times for key sizes 1024 and 1280 (key size 

768 was only tested with ElGamal.  Once the key size increased above 1280, RSA rose 

slower than ElGamal and remained rather steady for each input file size across the key 

size range.  Figure 20 shows the steadiness of RSA encryption time as opposed to 

ElGamal’s increasing encryption times for a 10MB file with key sizes from 1024 to 4096. 
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Figure 20.  RSA and Elg-E 10MB Encryption Time 

For RSA’s encryption time increased as the key size increased except for key size 

2048.  At this key size, the encryption time was less than the encryption time for key size 

1024.   

A comparison of decryption times for the public key algorithms, show that RSA 

has a slightly better decryption time overall than Elg-E above key size 1280.  Figure 21 

shows a comparison of the decryption times for RSA and Elg-E. 
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Figure 21.  RSA vs. Elg-E Decryption Time Comparisons 

  4.2.2.2  Encryption Results for Compressed Files. 

The zip compression utility yielded the fastest encryption time for random and 

non-random files followed by zlib.  Bzip2 had the slowest encryption time.  A sample of 

the data collected is displayed in figures few of the graphs are displayed below: 
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Figure 22.  AES Non-Random File Compressed Comparisons 
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Figure 23.  Elg-E Non-Random Compression Comparisons 

 4.2.3 Overall Analysis of Algorithms. 

 The data gathered from the gpgTester executions was used as input for the 

MatLab interpolator and controller.   Additionally, the data analysis from this section 

combined with the information from the references listed in the bibliography was used to 

create the security levels and the performance levels for Controller One and Controller 

Three.  Because of the requirement within Controller Three for only three algorithms per 

security and performance level for binary programming, Controller One and Controller 

Three had different encryption schemes for the security and performance levels. 

 The security levels were divided into five levels, high (5) to low (1) while the 

performance levels ranged from high (3) to low (1).  Table 12 lists the encryption choices 

for each security and performance levels for Controller One whereas Table 13 lists the 

security and performance levels for Controller Three (3 encryption choices per 

security/performance level). 
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Table 12.  Security and Performance Levels for Controller One 
Security 

Level 

Performance 

Level 

Encryption 

Algorithm 

Key Size 

1 1 RSA 1024, 1280 

1 2 ElGamal 768, 1024, 1280 

1 3 3DES, 

BlowFish 

128 

2 1 ElGamal 1536, 1792 

2 2 RSA 1536, 1792 

2 3 CAST5 128 

3 1 ElGamal 2048, 2304, 2560, 2816 

3 2 RSA 2048, 2304, 2560, 2816 

3 3 AES, TwoFish 128 

4 1 ElGamal 3072, 3328, 3584, 3840 

4 2 RSA 3072, 3328, 3584, 3840 

4 3 AES 192 

5 1 ElGamal 4096 

5 2 RSA 4096 

5 3 AES 256 
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Table 13.  Security and Performance Levels for Controller Three 
Security 

Level 

Performance 

Level 

Encryption and Key Size 

1 1 RSA 1280 and 1536; Elg-E 1280 

1 2 Elg-E 768 and 1024; RSA 1024 

1 3 3DES, BlowFish, CAST 5 

2 1 Elg-E 1536 and 1792; RSA 2304 

2 2 RSA 1792 and 2048; Elg-E 2048 

2 3 CAST5, 3DES, BlowFish 

3 1 Elg-E 2816 and 3072; RSA 3072 

3 2 RSA 2816 and 2560; Elg-E 2560 

3 3 AES, TwoFish, CAST5 

4 1 Elg-E 3840 and 3584; RSA 3840 

4 2 RSA 3328 and 3584; Elg-E 3328 

4 3 AES 192, TwoFish, CAST5 

5 1 Elg-E 3840 and 4096; RSA 4096 

5 2 Elg-E 3584; RSA 3840 and 3584 

5 3 AES 256 and 192; TwoFish 
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4.3 MatLab Interpolation (Step Two) 

The results from this step was used as input into the MatLab controllers.  The data 

from the gpgTester was compiled into one MatLab file, testing1.m.  This file was used to 

create formatted matrices for the other MatLab files to use.  There were 1363 lines of 

data compiled into testing1.m.  Each line represent one averaged encryption scenario 

from the gpgTester.  A sample listing of the code is shown below (note: the first line is 

included only for reference): 

Table 14.  Testing1.m Sample File Output 
A B C D E F G H I 

0 1 0 128 1048576 1048673 97 137.333 936.900 

0 5 3 1024 90177536 90216419 38883 11726.600 7813.870 

 

The random file category, A, was a 0 for a randomly generated file and a 1 for a 

non-randomly generated file.  For the algorithm category (B), AES was 0, TwoFish was 

1, CAST5 was 2, 3DES was 3, BlowFish was 4, ElGamal was 5, and RSA was 6.  For the 

compression category (C), non-compressed was 0, bzip2 was 1, zip was 2, and zlib was 

referred to by a 3.  The other categories were key size (D), input file size (E), encrypted 

output file size (F), file size difference (G), encryption times (H), and decryption times 

(I).  

During Step Two, cubic splining was performed to interpolate input file sizes with 

the data gathered from Step One.  For any input file size (within the tested data ranges), 

an interpolated output was produced.  This interpolated data, when inserted into the 
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original data, would produce a smooth line between the data points as shown in Figures 

24 and 25. 
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Figure 24.  TwoFish Cubic Spline for Encryption 

 Figure 24 shows the best curve fit for determining the encryption time for any 

given input using TwoFish with 128 bit encryption.  In the graph, the input value was 

49.299MB.  This value is interpolated with the TwoFish results from the gpgTester.  

From the gpgTester, the following data is closest to the input file size:  45.089MB with 

2310.37 encryption time and 50.070MB with encryption time of 2567.33.  The cubic 

spline interpolation outputted a 2529.2 encryption time for the 49.299MB file which 

places the encryption time between 45.089MB and 50.070MB but closer to the latter as it 

should. 
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Figure 25.  RSA Cubic Spline for Output File Size 

 A sample of the cubic spline for the output file size is shown in Figure 25 for 

RSA with 1024 bit encryption.  The input file size was 84.828266MB while the output 

file size was 84.82849MB.  The file size difference was 224 which is the same file size 

difference as seen with the gpgTester with RSA at 1024 bits. 

4.4 MatLab Controller (Step Three) 

The interpolation done in Step Two was fed into the MatLab controllers for 

optimizing the commodities that could be sent.  The controllers each had unique data 

results based upon the function of the controller. 
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 4.4.1 Random Commodity Analysis. 

 Controller One and Controller Two employed random number generators for 

commodity file size and priority.  Random number generators allowed for a wider range 

of values to be tested without being subject to researcher’s preferences.  A gamma 

distribution was used to generate the commodity file sizes while a uniform distribution 

was used for the priorities. 

A sample histogram of the gamma distribution for file sizes is shown in the Figure 

26. 
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Figure 26.  Gamma Distribution for File Sizes  
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The histogram showed that most of the random numbers for commodity file sizes 

fell between 0 and 150MB.  Several different sample histograms were created but show 

basically the same information as illustrated in Figure 26.   

For testing purposes, the input file sizes were restricted to 1MB to 100MB (very 

rarely are files greater than 100MB and most are under 30 MB).  To enforce this 

restriction, only numbers between 1MB and 100MB were allowed for the file sizes.   

The next histogram (Figure 27) shows a sample modified gamma distribution 

with the file size limitations.  The shapes of the histogram reveal the reverse exponential 

graph similar to the histograms from the non-modified gamma distribution. 
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Figure 27.  Modified Gamma Distribution for File Size  

Although the shapes of Figure 29 and 30 are similar to the non-modified gamma 

distribution, the uniformity of the bars are not as consistent as Figure 27.  This is because 

of the file size restriction.  If a randomly generated number via gamma distribution was 
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above 100MB or below 1MB, then this number was not used and another number was 

generated instead.   

The histogram (Figure 28) for the commodities’ priorities (the goodness) showed 

a uniform random distribution and not a reverse exponential increase (each priority from 

1 to 100 have an equal probability of occurring).    
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Figure 28.  Uniform Distribution of Commodity Priorities  

  The commodity matrix was a two column matrix with input size and value 

(priority).  Once the controller obtained the commodity matrix either via random 

generators or input files, it proceeded to optimize the data. 

4.4.2  Controller One Analysis. 

 Controller One used the concept of security levels and performance levels to 

optimize the data.  Table 12 from Section 4.2.3 shows the encryption schemes per 

security and performance level.   
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The controller maximized the commodity by first sorting the commodities from 

high to low and then only choosing the encryption scheme (determined by the security 

and performance level) which maximized the commodities (i.e. the aggregated encryption 

time and encrypted output file size did not exceed the available CPU and available 

bandwidth).   

 The output from this optimization was a four column matrix with input size, 

value, output encrypted file size and encryption time.  In addition, the sum of the 

priorities (the total goodness), total bandwidth required, and the total CPU required are 

also written to the output file.  Table 15 shows a sample output file from Controller One. 
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 Table 15.  Sample Output from Controller One 
1 120000000 3000 20 4 3 
2 437 64395928.920 2984.092   
3 77241394.300  30    
4 6486429.104  84    
5 92371565.296  78    
6 4709272.829  40    
7 46658998.933  40    
8 90862156.535  52    
9 31074677.131 97    
10 88939001.923 90    
11 95480951.768 67    
12 48285980.266 31    
13 57122688.347 37    
14 20101790.204 77    
15 20802228.353 12    
16 4700810.855  34    
17 48685609.267 71    
18 2756101.424 84    
19 29118058.790 3    
20 80469714.869 59    
21 3976446.057 95    
22 14607527.715 35    
23 0 0 0 192  
24 31074677.131 97 31074774.131 1376.479  
25 3976446.057 95 3976543.057 221.327  
26 6486429.104 84 6486526.104   325.975  
27 2756101.424 84 2756198.424   170.951  
28 20101790.204 77 20101887.204   889.359  

 

 Line 1, from the above table, show the available bandwidth, available CPU, 

number of commodities to be randomly generated, the security level, and the 

performance level, respectively.  Line 2 list the total goodness of the commodities 

chosen, the amount of bandwidth that will be required, and the amount of CPU needed to 

encrypt the commodities.  Lines 3 thru 22 list the 20 commodities (file size and priority) 

that were randomly generated.  Line 23 show the encryption scheme that yielded the 
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maximum number of commodities.  Lines 24 thru 28 list the commodities that can be sent 

including the output encrypted file size and encryption time.  

4.4.3  Controller Two Analysis 

Controller Two introduced binary integer programming to optimize the 

commodities.  It did not utilize the concept of security and performance levels, rather it 

used seven encryption schemes per commodity.  These seven encryption schemes were 

mutually exclusive (at most one encryption scheme was chosen by the solver).   

Initially, the testing tried to execute binary integer programming via the bintprog 

function installed within MatLab, however, warning messages were periodically received 

stating that the results may be inaccurate.     

Because of the unpredictability of the bintprog function, a different binary integer 

solver was researched and incorporated into MatLab.  The new solver, glpk, used a mex 

interface to run within MatLab.  The same testing done with bintprog was used to test the 

accuracy of glpk.  Through the testing, glpk did not exhibit any erratic behavior exhibited 

by bintprog.   

The outputted data from the glpk function included the x vector which represented 

the commodities that could be sent (see Section 3.4.4 for the explanation of the vectors 

and matrices used for binary integer programming).  During the verification process, the 

x variables were analyzed to ensure that mutual exclusion was maintained and that the 

available CPU and available bandwidth requirement was fulfilled.  To verify the accuracy 

of the outputted data (encryption times, encrypted file sizes, mutual exclusion of 

encryption algorithms) from glpk, hand calculations were used.  The hand calculations 
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reviewed each x variable and aggregated the encryption time and encrypted file size for 

each variable equal to 1.   

The controller read (from an input file) the available bandwidth, available CPU, 

and the number of commodities to be generated.  The output was sent to a file.  It 

included the commodities that could be sent.  The x vector, the status of the solver, the 

total goodness, and the encryption and bandwidth required.   

The number of commodities tested ranged from 4 to 100 commodities.  Each time 

the solver ran, a different set of commodities was used.  In addition, the available 

bandwidth and available CPU varied as well.  During this testing, the solver slowed down 

as more commodities were introduced.  A problem occurred when Controller Two 

attempted to execute the input lines from a file within a for loop (each input line included 

the available CPU, available bandwidth, and number of commodities to generate).  After 

approximately 57 commodities (sometimes less depending on the commodities 

generated), MatLab seemed to freeze.  However, to work around this problem, the input 

lines were fed into the controller one at a time (instead of reading 10 lines of input and 

executing in a for loop, it read one line of input and then the program was called again for 

the next nine lines of input).  By doing this work around, the solver was able to solve for 

100 commodities (100 was the limit for this research, however, to verify that this was not 

the limit for glpk, higher commodities were tested successfully).   

Each line of input was run five times to verify that the solver worked and to view 

the range of solutions solved.  For analysis to stabilize the input commodities, the same 
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commodities (initially generated randomly) were used for the testing of 5 to 100 

commodities, with the same available bandwidth and CPU. 

A sample output for five commodities with an input of 70MB available bandwidth 

and 3000 seconds for the available CPU yielded the results listed in Table 16.   

Table 16.  Sample Output File for Controller Two 
1 Input line 70000000 3000 5 

2 Sum Totals 225 62350813 2997 

3 Commodity 1  2063745.786 84  

4 Commodity 2 58624370.173 81  

5 Commodity 3 1662180.473 60  

6 Commodity 4 53546860.907 62  

7 Commodity 5 31546633.470 65  

8 x vector    

9 Status 5   

10 Time 0   

11 memory 2954.688 
 

  

12 Commodities to 

send 

   

 

Row 1 is the input line read into the Controller for five commodities.  Row 2 is 

the sum totals for the goodness (the priorities), encrypted file size, and encryption time 
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for the commodities chosen.  Row 3 to Row 7 refer to the five commodities requested 

(file size and priority).  Row 8 is the x vector which holds the values of the optimum 

decision variables for the solver.  Row 9 is the status of the optimization.  Line 10 refers 

to the time in seconds for the solved solution.  Row 11 refers to the amount of memory 

required by the solver in Kilobytes.  Lastly, Row 12 refers to the commodities that can be 

sent based upon the x vector.   

The x vector for the sample (every other commodity shaded) was  

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.  There were three ones 

for the x variable corresponding to commodity 1, 2 and 3.  Commodity 1 used encryption 

scheme 3, commodity 2 used encryption scheme 6, while Commodity 3 used encryption 

scheme 5.   

The status field of the output refers to the state of the optimization after the solver 

terminated.  There were six general status codes plus error codes possible: 

• 1 =  solution was undefined 

• 2 = solution was feasible 

• 3 = solution was infeasible 

• 4 = no feasible solution existed 

• 5 = solution was optimal 

• 6 = solution was unbounded 

• 101 – 110 = error code (10 different error codes) 
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The commodities to be sent was written in matrix form where each commodity 

had nine different columns.  Table 17 shows the actual commodities to be sent for the 

above sample. 

Table 17.  Sample Commodities to Send for Controller Two 
1 2 3 4 5 6 7 8 9 

2063745.786 84 3 0 4 0 128 2063810.786   199.098 

58624370.173 81 6 0 5 0 1024 58624725.173 2657.994

1662180.473 60 5 0 1 0 128 1662277.473   140.382 

 

Only 3 commodities out of the 5 requested were chosen for transmission.  

Columns 1 and 2 (from Table 17) refer to the original commodities.  Column 3 refers to 

the encryption scheme number.  Note, the numbers are the same as the x variables chosen 

(3, 6, and 5).  Columns 4 to 7 refer to the actual encryption scheme.  Column 4 referred to 

whether or not the interpolation should use the random file data (from gpgTester).  

Column 5 referred to the encryption type (AES was 0, TwoFish was 1, CAST5 was 2, 

3DES was 3, BlowFish was 4, Elg-E was 5, and RSA was 6).  Column 6 referred to 

whether or not compression should be used.  Column 7 referred to the key size for the 

algorithm.  Column 8 lists the encrypted file size.  Finally, Column 9 list the encryption 

time.   

Column 8 was added together to determine the amount of bandwidth the three 

commodities would require and likewise for Column 9 to determine the amount of CPU. 
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A compilation of another sample using 120MB as the available bandwidth and 

5000 as the available CPU is shown in Table 18. 

Table 18.  Compilation of Controller Two Output 
# of 

Commodities 

# to 

Send 

Time 

for 

Solver 

Memory for 

Solver 

Goodness 

Total 

Encrypted File 

Size Total 

Encryption 

Time Total 

5 4 0 2999.316 290 93897189.9 4987.178 

10 6 0 2999.316 409 107047826.6 4981.642 

20 8 0 2999.316 580 116931260.1 4995.799 

30 12 0 2999.316 783 110070128.9 4999.14 

40 14 0 2999.316 899 106841591.5 4990.108 

50 15 1 2999.316 1023 107961098.6 4998.682 

60 16 2 2999.316 1049 107160660.9 4998.986 

70 16 2 2999.316 1049 107160660.9 4998.986 

80 16 3 2999.316 1082 106587650.4 4999.787 

90 16 4 3091.422 1082 106587650.4 4999.787 

100 17 3 3091.422 1145 104502014.9 4989.059 

 

The above chart shows that the solver tries to maximize the encryption time and 

the encrypted file size while still attempting to maximize the number of commodities that 

can be sent.  The greatest number of commodities were for 17 commodities for an initial 

100 commodities.  The memory requirements for 100 commodities were very similar to 

the requirements for 5 initial commodities.  The time for the solver only increased slowly 

after 50 initial commodities, however, the time decreased by 1 for 100 commodities.  As 

expected the goodness total increased with an increase in input commodities.  Note, this 
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data was reflective of other test runs with different initial input commodities.  The 

characteristics were the same for solver time (between 0 and 4 observed), solver memory 

requirements (between 90 to 3100 was observed), and goodness total.  The number of 

commodities sent, however, was dependent upon the randomly generated commodity file 

sizes and priorities.  

4.4.4 Controller Three Analysis 

Controller Three merged the security and performance levels with the binary 

integer solver to determine which commodities could be transmitted.  This controller did 

not use randomly generated commodities but rather the commodities from an input file 

(similar to NS-2 output files).   

Each commodity input line included the input file size, priority, security level, 

and performance level.  Each of the security and performance levels were translated into 

three available encryption schemes as listed in Table 13 in Section 4.2.3.  These three 

encryption schemes became the basis for the mutual exclusions for the constraints matrix, 

A ( See Section 3.4.5 for an explanation of binary integer programming including the 

constraints matrix).   

The output file included the same items as Controller Two plus the original 

security and performance level for the commodity.  For a sample of the type of output 

captured, see Table 17 from Section 4.4.3.   

4.5 Analysis of NS-2 Simulations (Step Four) 

The simulations from NS-2 provided the commodities, the available bandwidth, 

available CPU, and the security and performance level for each commodity.  The format 
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was the same format as the Controller Three, however, for simulation purposes, the 

output did not include the x variable output.   

To actually run the simulations, input and output files were used to transfer data 

from MatLab to NS-2.  The NS-2 simulations were run via the Hybrid Agent for Network 

Control, a tool created by John Pecarina in his research of agent based frameworks 

(Pecarina, 2008). 

A sample line from an output file is: 

1   10000000.000   60   3   1   0   5   0   3072    10000867.000000000     575.648 
 

The first five values were the original values sent via the input file.  These values 

list the commodity flow number, the commodity file size, and priority followed by the 

security and performance levels.  The Controller Four (encryptFitter) determined the 

maximum commodities that could be sent and added six additional values to each line of 

the commodity (that was chosen).  These additional values were the four values for the 

encryption scheme (randomness, algorithm, compression, and key size), the required 

encrypted file size, and the encryption time.  

4.6 Comparison of Binary Solver and Non-Binary Solver 

 There were two different methods for optimizing the number of commodities that 

could be transmitted at a node, a non-binary solver (Controller One) and a binary solver 

(Controllers Two, Three, and Four).  The comparison was between Controller One and 

Controller Two because the other controllers build on Controller Two.  In order to 

compare the output from the different types of solvers, the input data had to be the same, 
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therefore, the random generation of the commodities were frozen, i.e., the same 

commodities were used for each controller comparison.  In addition, the security and 

performance levels were not used for Controller One.  Both Controllers used the same 

seven encryption schemes. 

 Overall Controller 2 using binary integer programming allowed more 

commodities for transmission and higher sums for the priorities.  Table 19 shows a 

sample comparison. 

Table 19.  Sample Comparison of Controllers 
 # of Initial 

Commodities 

Available 

BW 

MB 

Available 

CPU 

(Sec) 

Total 

Goodnes

s 

# of 

Commodities 

to Transmit 

Controller 1 5 70 3000 225 3 

Controller 2 5 70  3000 225 3 

Controller 1 20 120 5000 508 6 

Controller 2 20 120 5000 580 8 

Controller 1 40 120 5000 630 7 

Controller 2 40 120 5000 899 14 

Controller1 100 120 5000 580 7 

Controller 2 100 120 5000 1145 17 

  

The controllers using binary integer solver was able to maximize the output better 

than the non-binary integer solver.  Controller 1 became more inefficient as the number 
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of commodities increased whereas Controller 2 was able to increase efficiency even when 

the bandwidth and CPU remained constant as the commodity number increased. 

 



 

 

V.  Conclusions and Recommendations 

5.1 Summary of Research 

 Dialable cryptography for wireless networks provides users with the means to 

control their security requirements especially in a dynamically changing environment.   

 The research used two public key (RSA and ElGamal) and five symmetric key 

(AES, 3DES, TwoFish, BlowFish, and CAST5) algorithms.  Although public key 

encryption is normally not used to encrypt a file, it was used in the testing.  Periodically, 

public keys could be used to encrypt files especially since the encryption keys are public 

whereas for symmetric key algorithms, the keys must be shared prior to encrypting.   

 With any encryption algorithm, there are weaknesses within the 

encryption scheme and some encryption algorithms are considered better than others.  

Regardless, a “cryptosystem is secure if the best known attack requires as much work as 

an exhaustive key search.  By this definition, a secure cryptosystem with a small number 

of keys could be easier to break than an insecure cryptosystem with a large number of 

keys.” (Stamp, 2006).  In other words, larger key sizes can increase the security of public 

and symmetric key algorithms. 

 By dividing the encryption algorithms into different security levels and 

performance levels, users do not need to know the actual encryption algorithm but rather 

their estimate of the security required and of the performance requirements.  Furthermore, 

the MatLab controller conceals the binary integer programming (optimization) and data 

interpolation from the user.   
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 The analysis of the gpgTester was instrumental in the data collected from the 

interpolation and optimization steps.  Because of this interdependency, a thorough 

analysis of the gpgTester data was required prior to completing the other steps. 

 The interpolation of the data from the gpgTester was used by the MatLab 

controller for optimizing.  The data interpolation was limited to encryption and primarily 

to non-compressed algorithms.  For future research, the initial data must be varied 

enough to support interpolation of different requirements including compression.   

 The controllers provided three different methods for optimizing (security and 

performance levels, binary integer programming, and a combination of the two) the 

commodities.  These three different methods can be used to meet different user’s 

objectives for the commodities.  

 The fourth controller was basically the same as the third controller but was used 

to integrate into a network agent (HANC) via NS-2. 

 A major conclusion from the analysis of the controllers is that the binary integer 

solver maximized the number of commodities that can be sent and maximized the sum of 

the commodities’ priorities. 

5.2 Future Research 

The research conducted focused on the objective of creating a controller to 

determine encryption algorithms based upon security and performance levels for the 

transmission of the maximum number of commodities within the available bandwidth 

and CPU.  The research assumed that the bandwidth was correct as inputted, future 

research could delve into actually determining the bandwidth for wireless networks.  In 
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addition, more work would be needed into determining what the security and 

performance level dials should be.  This would require researching security policies and 

incorporating these policies into the performance and security levels of the encryption 

algorithms.   

 Although only seven encryption algorithms were used, future research could use 

other encryption algorithms to encrypt packets with a size range of under 1MB.  The 

research only investigated file sizes of over 1MB.  In addition, another research 

possibility would be to change the cryptographic algorithm for different blocks within a 

file similar to the AdaptCrypt created by Manzanares (Manzanares, Camara et al., 2005).  

Different encryption schemes for one file or packet would make it more secure during 

transmission.  

Regardless of different encryption algorithms or methods of dividing the files or 

packets, the research presented in this thesis provide a foundation for incorporating a 

dialable security and performance solution with binary integer programming to optimize 

commodities that can be transmitted over a wireless or wired network.    

5.3 Significance of Research 

Wireless technology provides the military a direct and immediate communication 

path between commanders and the battlespace.  This path can be between sensors, 

warfighters with JTRS or “militarized” cell phones or PDAs,  unmanned vehicles, highly 

sensorized aircraft, or via wireless networks.   

 The technology has inherent vulnerabilities that the military must address to 

continue to provide confidentiality, integrity, and availability of its resources and to 
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provide decision makers an intelligent view of the battlespace.  To do this, security is 

paramount in the utilization of wireless technology.  Research into securing wireless 

resources will benefit the military and its operations.  

 NetD must address the security requirements of wireless devices as our forces 

become more mobile and more technically advanced. 

Using adaptive security, a system can exist in a less secure but higher performing 

state for normal operations and then can adapt to a more secure and usually less 

performing state when negative factors arise within or outside the system.  Because it is 

adaptive, the system can utilize different cryptographic algorithms.   

This research lays a foundation for adapting the cryptographic algorithms for 

transmitting packets or files based upon the dynamics within a wireless or wired 

environment, namely, available bandwidth, available CPU, the particular commodity 

(size and priority), and the security and performance levels.  By creating the controllers to 

facilitate adaptive cryptography, this thesis provides three methods for selecting 

encryption schemes for maximizing the number of commodities that can be transmitted 

from a node.   

The first method, Controller One, uses the security levels and performance levels 

to determine a range of encryption schemes.  From this range, an optimal encryption 

scheme is chosen.  Controller Two uses a binary integer solver to determine the optimal 

encryption scheme while Controller Three combines security levels and performance 

levels in solving the binary integer problem.  These three controllers provide a method to 
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automate encryption selections (Controller Two), to override a binary solution, and 

provide more user input (Controller One), or if necessary, combine the selection process. 

 

 



 

 

Appendix 1 GpgTester 

The gpgTester was written in C++ by Matt Weeks.  Some modifications were 

made to ensure the output data was consistent with the encryption algorithms.  It was 

used to test different cryptographic algorithms and file sizes by using system calls to the 

GPG tool.  GPG (GNU Privacy Guard) is a free public key cryptographic command line 

tool for encrypting and decrypting data and for creating digital signatures using the 

OpenPGP standard defined by RFC 2440.  The version used in this research was version 

1.4.5 with copywrite 2006 from Free Software Foundation, Inc. 

The cryptographic algorithms supported by GPG were: 

• Public key:  RSA, RSA-E, RSA-S, Elg-E, DSA 

• Cipher key: 3DES, CAST5, BLOWFISH, AES, AES 192, AES256, TWOFISH 

• Hash: MD5, SHA1, RIPEMD160, SHA256, SHA384, SHA512, SHA224 

• Compression: Uncompressed, ZIP, ZLIB, BZIP2 

For this research only RSA, ElGamal, AES, AES 192, 3DES, AES 256, TwoFish, 

BlowFish, and CAST5 were used along with the various compression options (no hash 

testing, although gpgTester supported hashes).   

The key length (or size) varied for RSA and ElGamal.  The RSA key could not go 

below 1024 while ElGamal could go as low as 768.  The default for generating keys is 

DSA and ElGamal with a default size of 1024. (Kidwell 2005)  

GPG stores the public and private key on the computer for public key 

cryptography.  For security, GPG encrypts the private key with a short passphrase 

(usually good to have a random string of words for the passphrase). 
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Working within a cygwin environment, gpgTester generated random files for encrypting 

and decrypting using different algorithms.  By trying different sizes with different 

cryptographic algorithms, the gpgTester was verified to work as required regardless of 

the algorithm or size file chosen.   

 To verify that the random files were actually distinct, a separate program, 

testingDiff.cpp, was created with primarily the same code as gpgTester.  TestingDiff.cpp 

created and saved 30 random files (the same number of files generated by gpgTester).  

These files were then compared to each other to verify that the files were indeed distinct 

from each other.   

 Since gpgTester made system calls to gpg, the algorithms chosen by the user was 

verified to ensure that the actual algorithm was run via the system calls.  To do this 

verification on the encrypted file, a decryption was necessary.  The decryption stated 

what algorithm was used to encrypt the file.  
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Appendix 2 List of Computer Code Generated 

For this research, the following programs were created: 

1. gpgTester – This is the front end for gpg.  This was written in C++.  It made 

system calls to gpg with randomly generated files. 

2. testingDiff – This code was written in C++ to verify that the random files 

generated by gpgTester were indeed random. 

3. gpgTesterFile – This was the same code as gpgTester but it called gpg with non-

random files. 

4. inputCreate3DES, inputCreateAES, inputCreateBlowFish, inputCreateRSA, 

inputCreateElg, inputCreateCAST5, inputCreateTwoFish – These files (all 

MatLab) read the Results.xls spreadsheet and wrote the output to testing1.M file 

to create a matrix for the controllers. See Figure 29 for an interaction of these 

files. 

5. inputVariable.m –This file read the data from the matrix testing1.m and output a 

formatted matrix for other MatLab files. 

6. createMatrixA.m – This was used to generate the correct constraints matrix, A. 

7. indeSecurity.m, indeSecurity3.m– These files were used to determine the 

encryption scheme based upon the security and performance levels. 

8. securityAlg.m – This file was used to collect the seven different encryption 

algorithms for Controller Two. 

9. inputCommodities.m – This file randomly generated the input file size and 

priority per commodity. 
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10. runCryptGrav, runCryptGrav2, runCryptGrav3 – These files performed the data 

interpolation for the given input file size. 

11. inputCrypt, inputCrypt2, inputCrypt3 – These were the files which corresponded 

to Controller One, Two, and Three respectively.  They optimized the data from 

the runCryptGrav files. 

12. encryptFitter – This file was used to generate output files for the NS-2 

simulations. 
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Figure 29.  MatLab Files Interaction 
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